
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 10:
Puzzling
Pegboards

2Lecture 10: Pegboard Puzzle

Menu

• Problem Sets 2 and 3

• Pegboard Puzzler

3Lecture 10: Pegboard Puzzle

Problem Sets

• Not just meant to review stuff you should
already know

– Get you to explore new ideas

– Motivate what is coming up in the class

• The main point of the PSs is learning, not
evaluation
– Don’t give up if you can’t find the answer in the
book (you won’t solve many problems this way)

– Do discuss with other students

4Lecture 10: Pegboard Puzzle

PS2: Question 3
Why is

(define (higher-card? card1 card2)

(> (card-rank card1) (card-rank card2)

better than

(define (higher-card? card1 card2)

(> (car card1) (car card2))

?

5Lecture 10: Pegboard Puzzle

PS2: Question 8, 9

• Predict how long it will take

• Identify ways to make it faster

Most of next week and much of many later
classes will be focused on how computer

scientists predict how long programs will take,
and on how to make them faster.

6Lecture 10: Pegboard Puzzle

Can we do better?

(define (find-best-hand hole-cards community-cards)
(car (sort (possible-hands hole-cards

community-cards))
higher-hand?))

2

7Lecture 10: Pegboard Puzzle

Hmmm....

(define (find-closest goal lst closeness)
(if (= 1 (length lst))
(car lst)
(pick-closest closeness goal (car lst)

(find-closest goal (cdr lst) closeness))))

(define (pick-closest closeness goal num1 num2)
(if (< (closeness goal num1)

(closeness goal num2))
num1
num2))

8Lecture 10: Pegboard Puzzle

find-bestest

(define (find-bestest lst bestiness)
(if (= 1 (length lst))
(car lst)
(pick-bestier bestiness

(car lst)
(find-bestest goal (cdr lst) bestiness))))

(define (pick-bestier bestiness num1 num2)
(if (< (bestiness num1)

(bestiness num2))
num1
num2))

9Lecture 10: Pegboard Puzzle

find-best-hand
(define (find-bestest lst bestiness)
(if (= 1 (length lst)) (car lst)
(pick-bestier bestiness

(car lst)
(find-bestest goal (cdr lst) bestiness))))

(define (pick-bestier bestiness num1 num2)
(if (< (bestiness num1) (bestiness num2))
num1 num2))

(define (find-best-hand lst)
(find-bestest lst higher-hand?))

Next week: how much better is this?

10Lecture 10: Pegboard Puzzle

PS3:
Lindenmayer System Fractals

11Lecture 10: Pegboard Puzzle

L-Systems

CommandSequence ::= (CommandList)

CommandList ::= Command CommandList

CommandList ::=

Command ::= F

Command ::= RAngle

Command ::= OCommandSequence

12Lecture 10: Pegboard Puzzle

L-System
Rewriting

Start: (F)
Rewrite Rule:

F → (F O(R30 F) F O(R-60 F) F)

Work like BNF replacement rules,
except replace all instances at once!

Why is this a better model for biological systems?

CommandSequence ::= (CommandList)

CommandList ::= Command CommandList

CommandList ::=

Command ::= F

Command ::= RAngle

Command ::= OCommandSequence

3

Level 0

(F)

Level 1

F →→→→ (F O(R30 F) F O(R-60 F) F)Start: (F)

(F O(R30 F) F O(R-60 F) F)

14Lecture 10: Pegboard Puzzle

Level 2 Level 3

15Lecture 10: Pegboard Puzzle

The Great
Lambda Tree
of Ultimate
Knowledge
and Infinite
Power

(Level 5 with color)

16Lecture 10: Pegboard Puzzle

Rose Bush by Jacintha Henry and Rachel Kay

Tie Dye by Bill Ingram

17Lecture 10: Pegboard Puzzle

Pegboard Puzzle

1,1
2,1 2,2

3,1 3,2 3,3
4,1 4,2 4,3 4,4

5,1 5,2 5,3 5,4 5,5

18Lecture 10: Pegboard Puzzle

Solving the Pegboard Puzzle

• How to represent the state of the board?

– Which holes have pegs in them

• How can we simulate a jump?

– board state, jump positions → board state

• How can we generate a list of all possible
jumps on a given board?

• How can we find a winning sequence of
jumps?

4

19Lecture 10: Pegboard Puzzle

Removing a Peg

;;; remove-peg evaluates to the board you get by removing a

;;; peg at posn from the passed board (removing a peg adds a
;;; hole)

(define (remove-peg board posn)
(make-board (board-rows board)

(cons posn (board-holes board))))

20Lecture 10: Pegboard Puzzle

Adding a Peg

;;; add-peg evaluates to the board you get by
;;; adding a peg at posn to board (adding a
;;; peg removes a hole)

(define (add-peg board posn)
(make-board (board-rows board)

(remove-hole (board-holes board) posn)))

21Lecture 10: Pegboard Puzzle

Remove Hole

(define (remove-hole lst posn)
(if (same-position (car lst) posn)
(cdr lst)
(cons (car lst) (remove-hole (cdr lst) posn))))

What if we had a procedure (filter proc lst) that removes from

lst all elements for which proc (applied to that element) is false?

Could we define remove-hole using map?
No. (length (map f lst)) is always the same as (length lst), but
remove-hole needs to remove elements from the list.

22Lecture 10: Pegboard Puzzle

Filter

(define (filter proc lst)
(if (null? lst)
null
(if (proc (car lst)) ; proc is true, keep it
(cons (car lst) (filter proc (cdr lst)))
(filter proc (cdr lst))))) ; proc is false, drop it

> (filter (lambda (x) (> x 0)) (list 1 4 -3 2))
(1 4 2)

23Lecture 10: Pegboard Puzzle

Filter Remove

(define (filter proc lst)
(if (null? lst)

null
(if (proc (car lst)) ; proc is true, keep it

(cons (car lst) (filter proc (cdr lst)))
(filter proc (cdr lst))))) ; proc is false, drop it

(define (remove-hole lst posn)
(filter (lambda (pos)

(not (same-position pos posn)))
lst))

24Lecture 10: Pegboard Puzzle

Solving the Peg Board Game

• Try all possible moves on the board

• Try all possible moves from the positions
you get after each possible first move

• Try all possible moves from the positions
you get after trying each possible move
from the positions you get after each
possible first move

• …

5

25Lecture 10: Pegboard Puzzle

Charge

• Next class: we’ll finish a
pegboard puzzle solver
and find out if how
hard it is to be “genius”

• I have office hours now

• Make progress on PS3

