Lecture 11:
1% Pure
Luck

Make-up lab hours:
4:30-6 today

CS150: Computer Science i
(ff) University of Virginia David Evans
== http://www.cs.virginia.edu/evans

“ Computer Science

Solving the Pegboard Puzzle

¢ How to represent the state of the board?
— Which holes have pegs in them

¢ How can we simulate a jump?
—board state, jump positions — board state

* How can we generate a list of all possible
jumps on a given board?

* How can we find a winning sequence of
jumps?

Lecture 11: 1% Luck 3

— -
il Computer Science |

Removing a Peg

;17 remove-peg evaluates to the board you get by removing a
;11 peg at posn from the passed board (removing a peg adds a
717 hole)
(define (remove-peg board posn)
(make-board (board-rows board)
(cons posn (board-holes board))))

- :
Lecture 11: 1% Luck 5 iy Computer Science |

Pegboard Puzzle

JUMP ALL BUT ONE GAMES™
JUMP EACH TEE AND REMOVE

1 LEAVE ONLY ONE—YOU'RE GENIUS
2,1 2,2
3,1 3,2 3,3
4,1 4,2 43 4,4
51 5,2 53 54
Lecture 11: 1% Luck 2 !TEE Comp},lf‘e,{n,sk\ﬁis{,}gs“

Data Abstractions

(define (make-board rows holes)
(cons rows holes))

(define (board-holes board) (cdr board))
(define (board-rows board) (car board))

(define (make-position row col) (cons row col))
(define (get-row posn) (car posn))
(define (get-col posn) (cdr posn))

(define (same-position posl pos2)
(and (= (get-row pos1) (get-row pos2))
(= (get-col pos1) (get-col pos2))))

- .
Lecture 11: 1% Luck 4 fiily Computer Science
I} e CRERITY 7 Vs

Adding a Peg

;;; add-peg evaluates to the board you get by
7+ adding a peg at posn to board (adding a
;11 peg removes a hole)

(define (add-peg board posn)
(make-board (board-rows board)
(remove-hole (board-holes board) posn)))

- :
Lecture 11: 1% Luck 6 iy Computer Science |

Remove Hole

(define (remove-hole Ist posn)
(if (same-position (car Ist) posn)
(cdr Ist)
(cons (car Ist) (remove-hole (cdr Ist) posn))))

Could we define remove-hole using map?

No. (length (map f Ist)) is always the same as (length Ist), but
remove-hole needs to remove elements from the list.

What if we had a procedure (filter proc Ist) that removes from
Ist all elements for which proc (applied to that element) is false?

Filter

(define (filter proc Ist)
(if (null? Ist)
null
(if (proc (car Ist)) ; proc is true, keep it
(cons (car Ist) (filter proc (cdr Ist)))
(filter proc (cdr Ist))))) ; proc is false, drop it

> (filter (lambda (x) (> x 0)) (list 1 4 -3 2))
(142

Lecture 11: 1% Luck 7

= -
m; T '1€1¢
fi Computer Science |

- 5
Lecture 11: 1% Luck 8 il Computer Science

Filter Remove

(define (filter proc Ist)
(if (null? Ist)
null
(if (proc (car Ist)) ; proc is true, keep it
(cons (car Ist) (filter proc (cdr Ist)))
(filter proc (cdr Ist))))) ; proc is false, drop it

(define (remove-hole Ist posn)
(filter (lambda (pos)
(not (same-position pos posn)))
Ist))

Jumps

;11 move creates a list of three positions: a start (the posn that the
;11 jumping peg starts from), a jump (the posn that is being jumped
;7; over), and end (the posn that the peg will end up in)

(define (make-move start jump end) (list start jump end))
(define (get-start move) (first move))

(define (get-jump move) (second move))

(define (get-end move) (third move))

;1 execute-move evaluates to the board after making move
;;; move on board.
(define (execute-move board move)
(add-peg (remove-peg (remove-peg board (get-start move))
(get-jump move))
(get-end move)))

Lecture 11: 1% Luck 9

— -
il Computer Science |

- .
Lecture 11: 1% Luck 10 il Computer Science

Solving the Peg Board Game

¢ Try all possible moves on the board

» Try all possible moves from the positions
you get after each possible first move

¢ Try all possible moves from the positions
you get after trying each possible move
from the positions you get after each
possible first move

Finding a Winning Strategy

How is winning
2-person games
(e.g., chess,

N poker) different?
b Winning position!

Lecture 11: 1% Luck 11

= -
m; T '1€1¢
fi Computer Science |

= -
Lecture 11: 1% Luck 12 fil Computer Science |

Pegboard Puzzle

2,1 2,2
3,2
4,1 4,2 4,3 4,4
51 52 53 54 5,5

How do we find all possible jumps that land in
a given target hole?

Lecture 11: 1% Luck 13

= -
m; T '1€1¢
fi Computer Science |

Pegboard Puzzle

1,1
2,1 2,2

G 32 63

4,1 42 43 4,4

G1) 52 G3) 54 GY

How do we find all possible jumps that land in
a given target hole?

Pegboard Puzzle

1,1
@D 2.2
3,1 3,2 3,3

51 52 53 54 5,5

How do we find all possible jumps that land in
a given target hole?

Lecture 11: 1% Luck 14

= -
m; T '1€1¢
fi Computer Science |

All Moves into Target

;11 generate-moves evaluates to all possible moves that move a peg into
;11 the position target, even if they are not contained on the board.
(define (generate-moves target)
(map (lambda (hops)
(let ((hop1 (car hops)) (hop2 (cdr hops)))
(make-move
(make-position (+ (get-row target) (car hopl))
(+ (get-col target) (cdr hop1)))
(make-position (+ (get-row target) (car hop2))
(+ (get-col target) (cdr hop2)))

target)))

(list (cons (cons 2 0) (cons 1 0)) ;1 right of target, hopping left
(cons (cons -2 0) (cons -1 0)) ;1 left of target, hopping right
(cons (cons 0 2) (cons 0 1)) ;+ below, hopping up
(cons (cons 0 -2) (cons 0 -1)) ;; above, hopping down
(cons (cons 2 2) (cons 1 1)) ;; above right, hopping down-left

(cons (cons -2 2) (cons -1 1)) ;1 above left, hopping down-right
(cons (cons 2 -2) (cons 1 -1)) ;1 below right, hopping up-left
(cons (cons -2 -2) (cons -1 -1)))))) ;; below left, hopping up-right

- P
Lecture 11: 1% Luck 15 fiiiii Computer Scnencg

i UNIVERSITY o ViRGiN

- P
Lecture 11: 1% Luck 16 fiiiii Computer Scnencg

i UNIVERSITY o VIRGINA

All Possible Moves

(define (all-possible-moves board)
(append-all
(map generate-moves (board-holes holes))))

(define (append-all Ist)
(if (null? Ist) null
(append (car Ist) (append-all (cdr Ist)))))

But...only legal if: start and end are positions
on the board containing pegs!
Note: could use (apply append ...) instead of append-all.

Legal Move

(define (legal-move? move)
;7 A move is valid if:
;i o the start and end positions are on the board
;; 0 there is a peg at the start position
;i othere is a peg at the jump position
;0 there is not a peg at the end position
(and (on-board? board (get-start move))
(on-board? board (get-end move))
(peg? board (get-start move))
(peg? board (get-jump move))
(not (peg? board (get-end move)))))

Lecture 11: 1% Luck 17

= -
m; T '1€1¢
fi Computer Science |

Lecture 11: 1% Luck 18

= -
m; T '1€1¢
fi Computer Science |

All Legal Moves

(define (legal-move? move)

(define (all-possible-moves board) ;7 A move is valid if:
(append-all ;; o the start and end positions are on the board
(map generate-moves 7+ othere is a peg at the start position
(board-holes holes)))) ;i othere is a peg at the jump position

;i othere is not a peg at the end position
(and (on-board? board (get-start move))
(on-board? board (get-end move))
(peg? board (get-start move))
(peg? board (get-jump move))
(not (peg? board (get-end move)))))

(define (legal-moves board)
(filter legal-move? (all-possible-moves board)))

Lecture 11: 1% Luck 19

Becoming a “Genius”!

PaN _
—7 N ~___———>Tryall possible legal moves

b Winning position!

Lecture 11: 1% Luck 20

= -
filii Computer Science |

= -
filii Computer Science |

Winning Position

How do we tell if a board is in a winning position?

- .
Lecture 11: 1% Luck 21 fiily Computer Science

is-winning-position?

(define (board-squares board)
(count-squares (board-rows board)))

(define (count-squares nrows)
(if (=nrows 1) 1
(+ nrows (count-squares (- nrows 1)))))

(define (is-winning-position? board)
(= (length (board-holes board))
(- (board-squares board) 1)))

- .
Lecture 11: 1% Luck 22 il Computer Science

Solve Pegboard

(define (solve-pegboard board)
(find-first-winner board (legal-moves board)))

(define (find-first-winner board moves)
(if (null? moves)
(if (is-winning-position? board)
null ;; Found winning game, no moves needed
#f) ;; A losing position, no more moves
(let ((result (solve-pegboard
(execute-move board (car moves)))))
(if result ;; winner (not #f)
(cons (car moves) result) ; this move leads to winner!
(find-first-winner board (cdr moves)))))) ; try rest

Lecture 11: 1% Luck 23

All Cracker Barrel Games
(starting with peg 2 1 missing)

= -
filui Computer Science |

Pegs Number Fraction of IQ Rating
Left of Ways Games
1 1550 0.01|“You're Genius”
2 20686 0.15|“You're Purty Smart”
3 62736 0.46 |“Just Plain Dumb”
4 46728 0.33
5 5688 0.04 “Just Plain
6 374 0.0027 Eg-no-ra-moose”
7 82| 0.00058 _ _
Leaving 10 pegs requires much
10 2 0.00001 more brilliance than leaving 1!
Lecture 11; 19% Luck 2 fiili Computer Science |

Charge

¢ By luck alone, you can be a genius 1% of
the time!
» By trying all possibilities, you can a/ways be
a genius
— Next week and later: do we have time for this?
¢ PS3 due Monday
— Extra Lab hours: today (4:30-6)
— Regularly scheduled lab hours:
Sunday (4-5:30, 8-9:30)

= -
Lecture 11: 1% Luck 25 fils Computer Science |

