
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science
University of Virginia
Computer Science

Lecture 11:
1% Pure
Luck

Make-up lab hours:
4:30-6 today

2Lecture 11: 1% Luck

Pegboard Puzzle

1,1

2,1 2,2

3,1 3,2 3,3

4,1 4,2 4,3 4,4

5,1 5,2 5,3 5,4 5,5

3Lecture 11: 1% Luck

Solving the Pegboard Puzzle

• How to represent the state of the board?

– Which holes have pegs in them

• How can we simulate a jump?

– board state, jump positions → board state

• How can we generate a list of all possible
jumps on a given board?

• How can we find a winning sequence of
jumps?

4Lecture 11: 1% Luck

Data Abstractions
(define (make-board rows holes)
(cons rows holes))

(define (board-holes board) (cdr board))
(define (board-rows board) (car board))

(define (make-position row col) (cons row col))
(define (get-row posn) (car posn))
(define (get-col posn) (cdr posn))

(define (same-position pos1 pos2)
(and (= (get-row pos1) (get-row pos2))

(= (get-col pos1) (get-col pos2))))

5Lecture 11: 1% Luck

Removing a Peg

;;; remove-peg evaluates to the board you get by removing a

;;; peg at posn from the passed board (removing a peg adds a
;;; hole)

(define (remove-peg board posn)
(make-board (board-rows board)

(cons posn (board-holes board))))

6Lecture 11: 1% Luck

Adding a Peg

;;; add-peg evaluates to the board you get by
;;; adding a peg at posn to board (adding a
;;; peg removes a hole)

(define (add-peg board posn)
(make-board (board-rows board)

(remove-hole (board-holes board) posn)))

2

7Lecture 11: 1% Luck

Remove Hole

(define (remove-hole lst posn)
(if (same-position (car lst) posn)

(cdr lst)
(cons (car lst) (remove-hole (cdr lst) posn))))

What if we had a procedure (filter proc lst) that removes from

lst all elements for which proc (applied to that element) is false?

Could we define remove-hole using map?
No. (length (map f lst)) is always the same as (length lst), but
remove-hole needs to remove elements from the list.

8Lecture 11: 1% Luck

Filter

(define (filter proc lst)
(if (null? lst)

null
(if (proc (car lst)) ; proc is true, keep it

(cons (car lst) (filter proc (cdr lst)))
(filter proc (cdr lst))))) ; proc is false, drop it

> (filter (lambda (x) (> x 0)) (list 1 4 -3 2))
(1 4 2)

9Lecture 11: 1% Luck

Filter Remove

(define (filter proc lst)
(if (null? lst)

null
(if (proc (car lst)) ; proc is true, keep it

(cons (car lst) (filter proc (cdr lst)))
(filter proc (cdr lst))))) ; proc is false, drop it

(define (remove-hole lst posn)
(filter (lambda (pos)

(not (same-position pos posn)))
lst))

10Lecture 11: 1% Luck

Jumps
;;; move creates a list of three positions: a start (the posn that the

;;; jumping peg starts from), a jump (the posn that is being jumped
;;; over), and end (the posn that the peg will end up in)

(define (make-move start jump end) (list start jump end))
(define (get-start move) (first move))

(define (get-jump move) (second move))
(define (get-end move) (third move))

;;; execute-move evaluates to the board after making move
;;; move on board.

(define (execute-move board move)
(add-peg (remove-peg (remove-peg board (get-start move))

(get-jump move))

(get-end move)))

11Lecture 11: 1% Luck

Solving the Peg Board Game

• Try all possible moves on the board

• Try all possible moves from the positions
you get after each possible first move

• Try all possible moves from the positions
you get after trying each possible move
from the positions you get after each
possible first move

• …

12Lecture 11: 1% Luck

Finding a Winning Strategy
Start

How is winning
2-person games
(e.g., chess,

poker) different?
...

Winning position!

3

13Lecture 11: 1% Luck

Pegboard Puzzle

1,1

2,1 2,2

3,1 3,2 3,3

4,1 4,2 4,3 4,4

5,1 5,2 5,3 5,4 5,5

How do we find all possible jumps that land in
a given target hole?

14Lecture 11: 1% Luck

Pegboard Puzzle

1,1

2,1 2,2

3,1 3,2 3,3

4,1 4,2 4,3 4,4

5,1 5,2 5,3 5,4 5,5

How do we find all possible jumps that land in
a given target hole?

15Lecture 11: 1% Luck

Pegboard Puzzle

1,1

2,1 2,2

3,1 3,2 3,3

4,1 4,2 4,3 4,4

5,1 5,2 5,3 5,4 5,5

How do we find all possible jumps that land in
a given target hole?

16Lecture 11: 1% Luck

All Moves into Target
;;; generate-moves evaluates to all possible moves that move a peg into
;;; the position target, even if they are not contained on the board.

(define (generate-moves target)
(map (lambda (hops)

(let ((hop1 (car hops)) (hop2 (cdr hops)))
(make-move

(make-position (+ (get-row target) (car hop1))
(+ (get-col target) (cdr hop1)))

(make-position (+ (get-row target) (car hop2))
(+ (get-col target) (cdr hop2)))

target)))
(list (cons (cons 2 0) (cons 1 0)) ;; right of target, hopping left

(cons (cons -2 0) (cons -1 0)) ;; left of target, hopping right

(cons (cons 0 2) (cons 0 1)) ;; below, hopping up
(cons (cons 0 -2) (cons 0 -1)) ;; above, hopping down

(cons (cons 2 2) (cons 1 1)) ;; above right, hopping down-left
(cons (cons -2 2) (cons -1 1)) ;; above left, hopping down-right

(cons (cons 2 -2) (cons 1 -1)) ;; below right, hopping up-left
(cons (cons -2 -2) (cons -1 -1)))))) ;; below left, hopping up-right

17Lecture 11: 1% Luck

All Possible Moves

(define (all-possible-moves board)
(append-all
(map generate-moves (board-holes holes))))

(define (append-all lst)
(if (null? lst) null

(append (car lst) (append-all (cdr lst)))))

But…only legal if: start and end are positions
on the board containing pegs!

Note: could use (apply append ...) instead of append-all.

18Lecture 11: 1% Luck

Legal Move

(define (legal-move? move)
;; A move is valid if:
;; o the start and end positions are on the board
;; o there is a peg at the start position
;; o there is a peg at the jump position
;; o there is not a peg at the end position
(and (on-board? board (get-start move))

(on-board? board (get-end move))
(peg? board (get-start move))
(peg? board (get-jump move))
(not (peg? board (get-end move)))))

4

19Lecture 11: 1% Luck

All Legal Moves

(define (legal-moves board)
(filter legal-move? (all-possible-moves board)))

(define (legal-move? move)

;; A move is valid if:
;; o the start and end positions are on the board

;; o there is a peg at the start position
;; o there is a peg at the jump position

;; o there is not a peg at the end position
(and (on-board? board (get-start move))

(on-board? board (get-end move))

(peg? board (get-start move))
(peg? board (get-jump move))

(not (peg? board (get-end move)))))

(define (all-possible-moves board)
(append-all

(map generate-moves
(board-holes holes))))

20Lecture 11: 1% Luck

Becoming a “Genius”!
Start

...

Winning position!

Try all possible legal moves

21Lecture 11: 1% Luck

Winning Position

How do we tell if a board is in a winning position?

22Lecture 11: 1% Luck

is-winning-position?

(define (board-squares board)
(count-squares (board-rows board)))

(define (count-squares nrows)
(if (= nrows 1) 1

(+ nrows (count-squares (- nrows 1)))))

(define (is-winning-position? board)
(= (length (board-holes board))

(- (board-squares board) 1)))

23Lecture 11: 1% Luck

Solve Pegboard

(define (solve-pegboard board)
(find-first-winner board (legal-moves board)))

(define (find-first-winner board moves)
(if (null? moves)

(if (is-winning-position? board)
null ;; Found winning game, no moves needed
#f) ;; A losing position, no more moves

(let ((result (solve-pegboard
(execute-move board (car moves)))))

(if result ;; winner (not #f)
(cons (car moves) result) ; this move leads to winner!
(find-first-winner board (cdr moves)))))) ; try rest

24Lecture 11: 1% Luck

All Cracker Barrel Games
(starting with peg 2 1 missing)

IQ RatingFraction of
Games

Number
of Ways

Pegs
Left

0.00001210

0.00058827

0.00273746

0.0456885 “Just Plain

Eg-no-ra-moose”

0.33467284

“Just Plain Dumb”0.46627363

“You’re Purty Smart”0.15206862

“You’re Genius”0.0115501

Leaving 10 pegs requires much

more brilliance than leaving 1!

5

25Lecture 11: 1% Luck

Charge
• By luck alone, you can be a genius 1% of
the time!

• By trying all possibilities, you can always be
a genius

– Next week and later: do we have time for this?

• PS3 due Monday

– Extra Lab hours: today (4:30-6)

– Regularly scheduled lab hours:

Sunday (4-5:30, 8-9:30)

