

$>$ (fibo 5) \mid (fibo 5) \mid (fibo 4) $\|\mid$ (fibo 3) $\|\mid$ (fibo 2) $\|\mid 1$ $\|\mid$ (fibo 1) $\|\mid 1$ $\|\mid 12$ $\|\|\mid$ (fibo 2) $\|\mid 1$ $\mid 3$ \mid (fibo 3) $\|\mid$ (fibo 2) $\|\mid 1$ $\|\|\mid($ fibo 1$)$ $\|\mid 1$ $\mid 2$ $\mid 5$ 5	 How many calls to calculate (fibo 60)?	
Lecture 12: Sneeze	7 7 orme	Computer Science

fast-fibo		
```(define (fast-fibo n) (define (fib-helper a b left) (if (<= left 0) b (fib-helper b (+ a b) (- left 1)))) (fib-helper 1 1 (- n 2)))```		
	8	骨 Computer

## Fast-Fibo Results

> (fast-fibo 10)
55
> (time (fast-fibo 61))
cpu time: 0 real time: 0 gc time: 0
2504730781961
2.5 Trillion applications
2.5 GHz computer does 2.5 Billion simple operations per second, so 2.5 Trillion applications operations take $\sim 1000$ seconds.
Each application of fibo involves hundreds of simple operations...
Lecture 12: Sneezewort $\quad 9 \quad$ Computer Science
i;; The Earth's mass is $6.0 \times 10^{\wedge} 24 \mathrm{~kg}$
$>$ (define mass-of-earth (* 6 (expt 1024 )))
;i; A typical rabbit's mass is 2.5 kilograms
> (define mass-of-rabbit 2.5)
> (/ (* mass-of-rabbit (fast-fibo 60)) mass-of-earth)
$6.450036483 \mathrm{e}-013$
> (/ (* mass-of-rabbit (fast-fibo 120)) mass-of-earth)
$\mathbf{2 . 2 3 2 6 4 9 6 8 9 5 7 9 5 6 9 3}$
According to Bonacci's model, after less than 10 years, rabbits would out-weigh the Earth!

Beware the Bunnies!! Beware the Sneezewort!!
Lecture 12: Sneezewort 10 Computer Science


## Evaluation Cost

Actual running times
vary according to:

- How fast a processor you have
- How much memory you have
- Where data is located in memory
- How hot it is
- What else is running
- etc...


Lecture 12: Sneezewort
12
Computer Science

## Measuring Cost

- How does the cost scale with the size of the input
- If the input size increases by one, how much longer will it take?
- If the input size doubles, how much longer will it take?

Nokomis McCaskill Chris Hooe

Lecture 12: Sneezewort
13 Computer Science

The Golden Ratio


PS2 Question
(define (find-best-hand hands) (car (sort hands higher-hand?)))
(define (find-best Ist cf)
(if (= 1 (length Ist)) (car Ist)
(pick-better cf (car Ist) (find-best (cdr Ist) cf)))) (define (pick-better cf num1 num2) (if (cf num1 num2) num1 num2))
(define (find-best-hand hands)
(find-best hands higher-hand?))
Which is better and by how much?

17 Computer Science

Cost of Fibonacci Procedures
(define (fibo $n$ )
(define (fast-fibo $n$ )
(define (fib-helper a b left)
(if (= left 0 )
(if (or (= n 1) (= n 2))
1 ; ; ; base case
$(+($ fibo $(-n 1))$
(fibo (-n 2)))))
(fib-helper b (+ a b) (- left 1))))
(fib-helper $11(-\mathrm{n} 2)$ ))

Input	fibo	fast-fibo
$m$	$q$	$z=m k$
$m+1$	$q^{*} \Phi$	$(m+1) k$
$m+2$	at least $q^{2}$	$(m+2) k$

$\Phi=(/(+1$ (sqrt 5)) 2) $=$ "The Golden Ratio" ~ $1.618033988749895 .$. $\sim(/$ (fast-fibo 61) (fast-fibo 60)) $=1.618033988749895$

Lecture 12: Sneezewort
14
Computer Science



Sorting		
(define (sort st cf)		
(if (null? Ist) Ist   (let ((best (find-best lst cf)))   (cons best (sort (delete lst best) cf)))))		
(definie (find-best ( (tsf) (f)		
(define (pick-better cf num1 num2) (if (cf num1 num2) num1 num2)		
How much work is sort?		
	2	-1. ${ }_{\text {Comm }}$


Sorting Cost		
(define (sort Ist cf)   (if (null? Ist) Ist   (let ((best (find-best lst cf)))		
(define (find-be   (if (= 1 (length Ist)) (car Ist)   (pick-better cf (car Ist) (find-best (cdr Ist) cf))))		
If we double the length of the list, the amount of work approximately quadruples: there are twice as many applications of find-best, and each one takes twice as long		
12.5 ereater	23	Campute S Siene

## Sorting Hands

(define (sort Ist cf) (if (null? Ist) Ist
(let ((best (find-best lst cf)))
(cons
best
(sort (delete Ist best) cf)))))
(define (sort-hands Ist) (sort Ist higher-hand?))
Lecture 12: Sneezewort 20 Computer Science

## Sorting Cost

- What grows?
$-n=$ the number of elements in Ist
- How much work are the pieces?
find-best: work scales as $n$ (increases by one)
delete: work scales as $n$ (increases by one)
- How many times does sort evaluate find-best and delete? $n$
- Total cost: scales as $n^{2}$
Lecture 12: Sneezewort 22 Computer Science




## Charge

- Read Chapter 6: formal notations we will use for this type of analysis
- PS4 out now: you know everything you need for the programming parts; we will cover more on analysis Wednesday and Friday
- Beware the Bunnies and Sneezewort!


Lecture 12: Sneezewort 26
Computer Science

