
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 18: The Story So Far

2Lecture 18: Mutation

Menu

• Finish insert-sort-tree

• Course roadmap

• Introducing Mutation

A few people have extensions on Exam 1, so
no talking about the exam questions until Wednesday.

If you have an extension on Exam 1, don’t read Chapter 9
until you turn in the exam.

3Lecture 18: Mutation

insert-one-tree
(define (insert-one-tree cf el tree)
(if (null? tree)

(make-tree null el null)
(if (cf el (get-element tree))

(make-tree

(insertel-tree cf el (get-left tree))
(get-element tree) (get-right tree))

(make-tree (get-left tree)

(get-element tree)
(insertel-tree cf el (get-right tree))))))

Each time we call
insert-one-tree, the size
of the tree approximately
halves (if it is well
balanced).

Each application is
constant time.

The running time of insert-one-tree is in Θ (log n)

where n is the number of elements in the input tree,
which must be well-balanced.

4Lecture 18: Mutation

insert-sort-helper

(define (insert-sort-helper cf lst)
(if (null? lst) null

(insert-one-tree
cf (car lst)
(insert-sort-helper cf (cdr lst)))))

No change (other than using insert-one-tree)…but evaluates to a tree not a list!

(((() 1 ()) 2 ()) 5 (() 8 ()))

5Lecture 18: Mutation

extract-elements

We need to make a list of all the tree
elements, from left to right.

(define (extract-elements tree)
(if (null? tree) null

(append (extract-elements (get-left tree))
(cons

(get-element tree)
(extract-elements (get-right tree))))))

6Lecture 18: Mutation

Running time of insert-sort-tree
(define (insert-one-tree cf el tree)

(if (null? tree)
(make-tree null el null)

(if (cf el (get-element tree))
(make-tree (insert-one-tree cf el (get-left tree))

(get-element tree)
(get-right tree))

(make-tree (get-left tree)

(get-element tree)
(insert-one-tree cf el (get-right tree))))))

(define (insert-sort-tree cf lst)
(define (insert-sort-helper cf lst)

(if (null? lst) null
(insert-one-tree

cf (car lst)
(insert-sort-helper cf (cdr lst)))))

(extract-elements (insert-sort-helper cf lst)))

Θ(log n)

n = number of
elements in tree

Θ(n log n)

n = number of
elements in lst

2

7Lecture 18: Mutation

0

2000

4000

6000

8000

10000

12000

2

1
0

1
8

2
6

3
4

4
2

5
0

5
8

6
6

7
4

8
2

9
0

9
8

n log2 n

insert-sort-tree

n
2

insert-sort

Growth of time to sort random list

8Lecture 18: Mutation

What if tree is not well-balanced?

2

3

5

8

13

A pathologically
unbalanced tree is
as bad as a list!

insert-one worst case
requires n recursive
applications,
so insert-sort-tree
worst case is in Θ(n2)

9Lecture 18: Mutation

Comparing sorts
> (testgrowth best-first-sort)
n = 250, time = 110

n = 500, time = 371

n = 1000, time = 2363
n = 2000, time = 8162

n = 4000, time = 31757

(3.37 6.37 3.45 3.89)
> (testgrowth insert-sort)

n = 250, time = 40
n = 500, time = 180

n = 1000, time = 571

n = 2000, time = 2644
n = 4000, time = 11537

(4.5 3.17 4.63 4.36)

> (testgrowth insert-sort-halves)

n = 250, time = 251

n = 500, time = 1262
n = 1000, time = 4025

n = 2000, time = 16454

n = 4000, time = 66137
(5.03 3.19 4.09 4.02)

> (testgrowth insert-sort-tree)
n = 250, time = 30

n = 500, time = 250

n = 1000, time = 150
n = 2000, time = 301

n = 4000, time = 1001

(8.3 0.6 2.0 3.3)

10Lecture 18: Mutation

Can we do better?

• Making all those trees is a lot of work

• Can we divide the problem in two halves,
without making trees?

This is the famous “Quicksort”
algorithm invented by Sir Tony
Hoare. See Chapter 8.

There are lots of ways to do a little bit better, but no way to do
asymptotically better. All possible sort procedure have running times

in Ω(n log n). (We’ll explain why later in the course...)

11Lecture 18: Mutation

Course RoadmapSynthesis

Analysis

C
h
 2

:
L
a
n
g
u
a
g
e

C
h
 3

:
P
ro

g
ra

m
m

in
g

C
h
 4

:
P
ro

ce
d
u
re

s

C
h
 5

:
D
a
ta

C
h
 6

:
C
o
st

C
h
 7

:
T
im

e

C
h
 8

:
S
o
rt
in

g
 a

n
d
 S

e
q
u
e
n
ci
n
g

P
S

5
,
C

h
 9

:
S

ta
te

P
S
6
,
C
h
 1

0
:
O
b
je

ct
s

C
h
 1

3
:
T
ra

ct
a
b
ili
ty

C
h
 1

1
:
M

o
d
e
ls

P
S
7
,
C
h
 1

3
:
M

e
ta

-L
a
n
g
u
a
g
e

C
h
 1

2
:
C
o
m

p
u
ta

b
ili
ty

P
S
8
,
9
:
B
u
ild

in
g
 W

e
b

A
p
p
lic

a
ti
o
n
s

You
are
here

12Lecture 18: Mutation

Computer Science: CS150 so far
• How to describe information processes by defining

procedures

– Programming with procedures, lists, recursion

– Chapters 3, 4, 5

• How to predict properties about information
processes

– Predicting running time, Θ, Ο, Ω

• How to elegantly and efficiently implement
information processes

– Chapter 3 (rules of evaluation)

3

13Lecture 18: Mutation

CS150 upcoming

• How to describe information processes by defining
procedures

– Programming with state, objects, networks

• How to predict properties about information
processes

– What is the fastest process that can solve a given
problem?

– Are there problems which can’t be solved by algorithms?

• How to elegantly and efficiently implement
information processes

– How to implement a Scheme interpreter

14Lecture 18: Mutation

The Liberal Arts

Trivium (3 roads)

language

Quadrivium (4 roads)

numbers

Grammar Rhetoric Logic Arithmetic

Geometry

Music

Astronomy

From Lecture 1:

15Lecture 18: Mutation

Liberal Arts Checkup
• Grammar: study of meaning in written

expression

• Rhetoric: comprehension of

verbal and written discourse

• Logic: argumentative discourse

for discovering truth

• Arithmetic: understanding numbers

• Geometry: quantification of space

• Music: number in time

• Astronomy

BNF replacement rules for describing languages,

rules of evaluation for meaning

Not much yet…
interfaces between

components (PS6-9),
program and user (PS8-9)

Rules of evaluation, if,
recursive definitions

Not much yet…

wait until April

Curves as procedures,

fractals (PS3)

Yes, listen to “Hey Jude!”

Friday: read Neil deGrasse Tyson’s essay

T
ri
v
iu

m
Q

u
a

d
ri
v
iu

m

