
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 19: 
Programming with 

State

2Lecture 19: Mutation

Notices
• Today: normal lab hours (4-5:30pm)

• Thursday’s lab hours will be 5-7pm (instead of 
normally scheduled times)

• Spring Break – there will not be normally 
scheduled lab hours or office hours between 
March 3 and March 10.  Normal lab hours resume 
Sunday, March 11. 

• Exam 1 will be returned at end of today’s class

• Schedule for rest of semester is updated on the 
course web (www.cs.virginia.edu/schedule/)

3Lecture 19: Mutation

Evaluation Rule 2: Names

If the expression is a name, it 
evaluates to the value associated with 
that name.

> (define two 2)
> two
2

From Lecture 3:

4Lecture 19: Mutation

Names and Places

• A name is not just a value, it is a 
place for storing a value.

• define creates a new place, 
associates a name with that place, 
and stores a value in that place

x: 3
(define x 3)

5Lecture 19: Mutation

Bang!
set! (“set bang”) changes the value 
associated with a place

> (define x 3)
> x
3

> (set! x 7)

> x
7

x:   37

6Lecture 19: Mutation

set! should make you nervous

> (define x 2)
> (nextx)
3
> (nextx)
4

> x
4

Before set! all procedures 
were functions (except for 
some with side-effects).  
The value of (f) was the 
same every time you 
evaluate it.  Now it might 
be different!



2

7Lecture 19: Mutation

Defining nextx

(define (nextx)
(set! x (+ x 1))
x)

(define nextx
(lambda ()
(begin
(set! x (+ x 1))
x))))

syntactic sugar for

8Lecture 19: Mutation

Evaluation Rules

> (define x 3)
> (+ (nextx) x)
7
or 8
> (+ x (nextx))
9
or 10

DrScheme evaluates 
application subexpressions 
left to right, but Scheme 
evaluation rules allow any 
order.

9Lecture 19: Mutation

set-car! and set-cdr!

(set-car! p v)

Replaces the car of the cons p with v.

(set-cdr! p v)

Replaces the cdr of the cons p with v.

These should scare you even more then set!!

10Lecture 19: Mutation

> (define pair (cons 1 2))
> pair
(1 . 2) pair:

1 2

11Lecture 19: Mutation

> (define pair (cons 1 2))
> pair
(1 . 2)
> (set-car! pair 0)
> (car pair)
0

> (cdr pair)
2

> (set-cdr! pair 1)
> pair
(0 . 1)

pair:

1 20 1

12Lecture 19: Mutation

map

Functional Solution: A procedure that 
takes a procedure of one argument and a 
list, and returns a list of the results 
produced by applying the procedure to 
each element in the list.

(define (map proc lst)
(if (null? lst) null

(cons (proc (car lst))
(map proc (cdr lst)))))



3

13Lecture 19: Mutation

Imperative 
Solution

A procedure that takes a procedure and list as 
arguments, and replaces each element in the list 
with the value of the procedure applied to that 
element.

(define (map! f lst)
(if (null? lst) (void)

(begin
(set-car! lst (f (car lst)))
(map! f (cdr lst)))))

(define (map proc lst)

(if (null? lst) null

(cons (proc (car lst))
(map proc (cdr lst)))))

14Lecture 19: Mutation

Programming with Mutation
> (map! square (intsto 4))
> (define i4 (intsto 4))
> (map! square i4)
> i4
(1 4 9 16)

> (define i4 (intsto 4))
> (map square i4)
(1 4 9 16)

> i4
(1 2 3 4)

F
u

n
c
tio

n
a

l
Im

p
e

ra
tiv

e

15Lecture 19: Mutation

Mutation Changes Everything!

• We can no longer talk about the “value of 
an expression”

– The value of a give expression can change!

– We need to talk about “the value of an 
expression in an execution environment ”

• The order in which expressions are 
evaluated now matters

16Lecture 19: Mutation

Why Substitution Fails?

> (define (nextx) (set! x (+ x 1)) x)
> (define x 0)
> ((lambda (x) (+ x x)) (nextx))
2

Substitution model:

(+ (nextx) (nextx))
(+ (begin (set! x (+ x 1)) x) (begin (set! x (+ x 1)) x))
(+ (begin (set! 0 (+ 0 1)) 0) (begin (set! 0 (+ 0 1)) 0))
(+ 0 0)
0

17Lecture 19: Mutation

Names and Places

• A name is a place for storing a value.

• define creates a new place

• cons creates two new places, the car and 
the cdr

• (set! name expr) changes the value in the 
place name to the value of expr

• (set-car! pair expr) changes the value in 
the car place of pair to the value of expr

18Lecture 19: Mutation

Lambda and Places

• (lambda (x) …) also creates a new place 
named x

• The passed argument is put in that place

> (define x 3)
> ((lambda (x) x) 4)
4
> x
3

How are these
places different?

x : 3

x : 4



4

19Lecture 19: Mutation

Location, Location, Location

• Places live in frames

• An environment is a frame and a 
pointer to a parent environment

• All environments except the global 
environment have exactly one parent 
environment, global environment has 
no parent

• Application creates a new environment

20Lecture 19: Mutation

Environments

global

environment

> (define x 3)

+ : #<primitive:+>

null? : #<primitive:null?>

The global environment points to the outermost 
frame. It starts with all Scheme primitives.

x : 3

21Lecture 19: Mutation

Evaluation Rule 2: Names
A name expression evaluates to the value 
associated with that name.
To find the value associated with a name, look for the 
name in the frame associated with the evaluation 
environment.  If it contains a place with that name, 
the value of the name expression is the value in that 
place.  If it doesn’t, the value of the name expression 
is the value of the name expression evaluated in the 
parent environment if the current environment has a 
parent.  Otherwise, the name expression evaluates to 
an error (the name is not defined).

22Lecture 19: Mutation

Procedures

global

environment

> (define double (lambda (x) (+ x x)))

+ : #<primitive:+>
null? : #<primitive:null?>

double: ??

x : 3

23Lecture 19: Mutation

How to Draw a Procedure

• A procedure needs both code and an 

environment

– We’ll see why soon

• We draw procedures like this:
Environment
pointer

environment: 
parameters: x
body: (+ x x)

24Lecture 19: Mutation

How to Draw a Procedure 
(for artists only)

Environment
pointer

x
(+ x x)

Input parameters

(in  mouth) Procedure Body



5

25Lecture 19: Mutation

Procedures

global

environment

> (define double 
(lambda (x) (+ x x)))

+ : #<primitive:+>
null? : #<primitive:null?>

double: 

x : 3

environment:
parameters: x
body: (+ x x)

26Lecture 19: Mutation

Application

• Old rule: (Substitution model)

Apply Rule 2:  Constructed 

Procedures. To apply a constructed 
procedure, evaluate the body of the 
procedure with each formal parameter 
replaced by the corresponding actual 
argument expression value.

27Lecture 19: Mutation

New Application Rule 2:
1. Construct a new environment, whose 

parent is the environment to which the 
environment pointer of the applied 
procedure points.

2. Create a place in that frame for each 
parameter containing the value of the 
corresponding operand expression. 

3. Evaluate the body in the new environment.  
Result is the value of the application.

28Lecture 19: Mutation

1. Construct a new 
environment, parent is 
procedure’s environment 
pointer

2. Make places in that 
frame with the names of 
each parameter, and 
operand values

3. Evaluate the body in the 
new environment

global

environment

> (double 4)
8

+ : #<primitive:+>

x : 3

x :  4

(+ x x)

double: 

environment:
parameters: x
body: (+ x x)

29Lecture 19: Mutation

Charge

• Now: Return Exam 1

– My stack of exams is sorted by first name (as 
you wrote it on your exam)

– What is a good algorithm for sorting you all in 
order to hand back the exams?

• PS5: You know everything you need to do it 
after today, so start early!

• Friday: Error Messages, Golden Ages, Sex, 
Politics, and Religion


