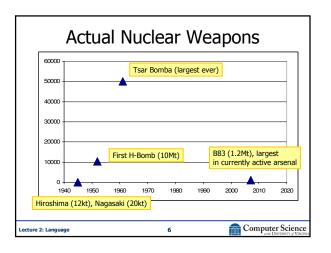





## Megabytes vs. Megatons

- Computing: 30,000,000 times increase in power since 1969
- Nuclear weapons?


ecture 2: Language 3 Computer Science



# If Nuclear Weapons followed Moore's Law...

- 30M \* 50 Megatons = 1.5 Teratons
- 1 Megaton TNT =  $4.184 * 10^{15}$  Joules
- 1.5 Teratons TNT =  $6.3 * 10^{21}$  Joules
- Energy from Sun to Earth
  - =  $4 \times 10^{18}$  Joules/ Year
- One bomb today ~ all the energy to reach the Earth from the Sun since 400 AD

Lecture 2: Language 5 Computer Science



If it takes 60 seconds to compute a photomosaic for Problem Set 1 today on a typical PC, estimate how long it will take CS150 students in 2010 to compute the same photomosaic? How long will it take in 2013? > (/ (\* (- 2010 2007) 12) 18) Difference in years \* 12 = number of months Number of months / 18 = number of doublings > (/ 60 (\* 2 2)) according to Moore's Law > (/ (\* (- 2013 2007) 12) 18) 60 seconds today, 2 doublings by 2010 15 seconds in 2010 > (/ 60 (\* 2 2 2 2)) Reality check: Moore's "law" is just an "observation". We'll see one reason later today why it won't continue forever. > (exact->inexact (/ 60 (\* 2 2 2 2))) 3.75 60 seconds today, 4 doublings by 2013 3.75 seconds in 2013 cture 2: Language a Computer Science

Are there any non-recursive natural languages? What would happen to a society that spoke one?

Not for humans at least.
They would run out of original things to say.

Chimps and Dolphins are able to learn non-recursive "languages" (some linguists argue they are not really "languages"), but only humans can learn recursive languages.

Computer Science

# Running out of Ideas

"Its all been said before."

Eventually true for a non-recursive language.

Never true for a recursive language. There is always something original left to say!

Lecture 2: Language 9 Computer Science

# Post Production Systems

cture 2: Language 10 amputer Science

# **Production Systems**

- · Set of symbols
  - Primitives
- Set of rules for manipulating symbols
  - Hofstadter: Rules of Production, Rules of Inference
  - Also: Rules of Combination

Lecture 2: Language 11 Computer Science

## The MIU System

• Symbols: M, I, U

cture 2: Language

- Rules of Production:
  - **Rule I:** If you have a string ending in I, you can add a  $\mathbb U$  at the end.
  - Rule II: Suppose you have Mx. Then you may add Mxx to your collection.
  - Rule III: If III occurs in one of the strings in your collection you may make a new string with U in place of III.
  - Rule IV: If UU occurs inside one of your strings, you can drop it.

ecture 2: Language 12 Computer Science

# MIU System Example Start with MUI, produce MIU

#### Rules of Production:

**Rule I:** If you have a string ending in I, you can add a  $\mbox{\sf U}$  at the end.

**Rule II:** Suppose you have Mx. Then you may add Mx to your collection.

**Rule III:** If III occurs in one of the strings in your collection you may make a new string with U in place of III.

**Rule IV:** If UU occurs inside one of your strings, you can drop it.

Lecture 2: Language

2

Computer Science

### **Survey Summary**

- 53 Responses
  - 63 are registered
- Problem Set Partners
  - If you selected "Yes" for the question about wanting to be assigned a partner for PS1, you should have received an email from me telling you who your partner is
  - For PS2 everyone will be assigned a partner
  - For others, some you will choose, others you may be assigned

Lecture 2: Language

14

Computer Science

## Very Diverse Class

- Years: 12 First, 15 Second, 18 Third, 7 Fourth+
- Majors:
  - 19 Computer Science
  - 11 Undecided
  - 7 Cognitive Science
  - -3 Economics, Math
  - 2 Psychology
  - 1 Anthropology, Architecture, Commerce, Foreign Affairs, Media Studies, Music, Philosophy, Systems Engineering

ecture 2: Languag

15

Computer Science

# Survey Responses Continued

- Previous programming: 19 None, 32 Some
- Food: 28 Bodos, 11 Krispy Kreme, 10 pizza, 1 Korean Food, 1 Outback, 1 Paccino's, 1 Arch's, 1 Dunkin Donuts
- Topic: 18 Google Maps, 16 Facebook, 5 Second Life, 5 Java

See course website (by Monday) for my responses to questions and survey summary

Lecture 2: Language

16

Computer Science

# Languages

Lecture 2: Language

17

Computer Science

# What is a language?

#### Webster:

A systematic means of communicating ideas or feelings by the use of conventionalized signs, sounds, gestures, or marks having understood meanings.

Lecture 2: Language

18

Computer Science

## Linguist's Definition

(Charles Yang)

A description of pairs (*S*, *M*), where *S* stands for sound, or any kind of surface forms, and *M* stands for meaning.

A theory of language must specify the properties of S and M, and how they are related.

Lecture 2: Language

10



## Languages and Formal Systems

What is the difference between a formal system and a language?

With a language, the surface forms have **meaning**.

Caveat: computer scientists often use *language* to mean just a set of surface forms.

ecture 2: Language

20

Computer Science

## What are languages made of?

- Primitives (almost all languages have these)
  - -The simplest surface forms with **meaning**
- Means of Combination (all languages have these)
  - Like Rules of Production for Formal Systems
  - Ways to make new surface forms from ones you already have
- Means of Abstraction (all powerful languages have these)
  - Ways to use simple surface forms to represent complicated ones

Lecture 2: Language

21



# Does English have these?

- Primitives
  - Words (?)
    - e.g., "antifloccipoccinihilipilification" **not** a primitive
  - Morphemes smallest units of meaning
    - e.g., anti- ("opposite")
- Means of combination
  - e.g., Sentence ::= Subject Verb Object
  - Precise rules, but not the ones you learned in grammar school

Ending a sentence with a preposition is something up with which we will not put.
Winston Churchill

Lecture 2: Language

22



# Does English have these?

- Means of abstraction
  - Pronouns: she, he, it, they, which, etc.
  - Confusing since they don't always mean the same thing, it depends on where they are used.

The "**these"** in the slide title is an abstraction for the three elements of language introduced 2 slides ago.

The "**they"** in the confusing sentence is an abstraction for pronouns.

Lecture 2: Language

23

Computer Science

How should we describe languages?

ecture 2: Language

24

Computer Science

#### **Backus Naur Form**

symbol ::= replacement

We can replace symbol with replacement

A ::= B means anywhere you have an A, you can replace it with a B.

*nonterminal* – symbol that appears on left side of rule

*terminals* – symbol that **never** appears on the left side of a rule

Lecture 2: Language

25

Computer Science

## **BNF Example**

Sentence ::= NP Verb

NP ::= Noun What are the terminals? Noun ::= Scheme How many different things

Verb ::= sucks can we express with this

language?

4, but only 2 are true.

Computer Science

Lecture 2: Language

26

## **BNF** Example

*Sentence* ::= *NP Verb* 

NP ::= Noun

NP ::= Noun and NP

*Noun* ::= **Dave** 

Noun ::= Scheme

Verb ::= rocks

Verb ::= sucks

How many

different things can we express

with this

language?

Infinitely many! Recursion is powerful.

ecture 2: Language

27

Computer Science

### Most Essential Scheme

Expr ::= PrimitiveExpr

PrimitiveExpr ::= Number

*PrimitiveExpr* ::= + | \* | <= | ...

*Expr* ::= *Name* 

Expr ::= ApplicationExpr

ApplicationExpr ::= (Expr MoreExprs)

MoreExprs ::=

*MoreExprs* ::= Expr MoreExprs

This is enough for everything you need to write for PS1

Lecture 2: Language

28

Computer Science

# Charge

- Problem Set 1: due Monday
- Lab Hours: posted on website
  - -Now and Sunday 4-5:30, 8-9:30
  - -Take advantage of them!
  - -If you can, follow us to lab now

Lecture 2: Language

29

Computer Science