
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 23: Lecture 23:

Programming Programming

with Objectswith Objects

2Lecture 23: Programming with Objects

Reminder

• Start thinking of ideas of PS9 and
discussing them on the forum

http://www.cs.virginia.edu/forums/viewforum.php?f=28

– You can also vote in the “should we have a
quiz Monday” poll
http://www.cs.virginia.edu/forums/viewtopic.php?t=1651

http://www.sportsline.com/collegebasketball/scoreboard

3Lecture 23: Programming with Objects

Problem-Solving Strategies

• PS1-PS4: Functional Programming

– Focused on procedures

– Break a problem into procedures that can be
combined to solve it

• PS5: Imperative Programming

– Focused on data

– Design data for representing a problem and
procedures for updating that data

4Lecture 23: Programming with Objects

Problem-Solving Strategies

• PS6: “Object-Oriented Programming”

– Focused on objects: package procedures and
state

– Model a problem by dividing it into objects

– Lots of problems in real (and imaginary)
worlds can be thought of this way

5Lecture 23: Programming with Objects

Counter Object

(define (make-counter)
(let ((count 0))
(lambda (message)
(cond ((eq? message ’reset!)

(set! count 0))
((eq? message ’next!)
(set! count (+ 1 count)))
((eq? message ’current) count)
(else
(error "Unrecognized message"))))))

Instance variable

Methods

6Lecture 23: Programming with Objects

Defining ask

> (define bcounter (make-counter))
> (ask bcounter 'current)
0
> (ask bcounter 'next)
> (ask bcounter 'current)
1

(ask Object Method)

(define (ask object message)
(object message))

2

7Lecture 23: Programming with Objects

Inheritance

8Lecture 23: Programming with Objects

There are many kinds of numbers…

• Whole Numbers (0, 1, 2, …)

• Integers (-23, 73, 0, …)

• Fractions (1/2, 7/8, …)

• Floating Point (2.3, 0.0004, 3.14159)

• But they can’t all do the same things

– We can get the denominator of a fraction, but
not of an integer

9Lecture 23: Programming with Objects

make-fraction
(define make-fraction
(lambda (numerator denominator)
(lambda (message)
(cond
((eq? message 'value)
(lambda (self) (/ numerator denominator))
((eq? message 'add)
(lambda (self other)
(+ (ask self 'value) (ask other 'value)))

((eq? message ‘get-numerator)
(lambda (self) numerator))
((eq? message ‘get-denominator)
(lambda (self) denominator))
)))))

Same as in

make-number

Note: our add
method evaluates

to a number, not

a fraction object
(which would be

better).

10Lecture 23: Programming with Objects

Why is redefining add a bad thing?

• Cut-and-paste is easy but…

• There could be lots of number methods
(subtract, multiply, print, etc.)

• Making the code bigger makes it harder to
understand

• If we fix a problem in the number add
method, we have to remember to fix the
copy in make-fraction also (and real,
complex, float, etc.)

11Lecture 23: Programming with Objects

make-fraction
(define (make-fraction numer denom)

(let ((super (make-number #f)))
(lambda (message)
(cond
((eq? message 'value)
(lambda (self) (/ numer denom)))

((eq? message 'get-denominator)
(lambda (self) denom))

((eq? message 'get-numerator)
(lambda (self) numer))

(else
(super message))))))

12Lecture 23: Programming with Objects

Making Subobjects

(define (make-fraction numer denom)
(make-subobject
(make-number #f)))
(lambda (message)
(cond
((eq? message 'value)
(lambda (self) (/ numer denom)))
((eq? message 'get-denominator)
(lambda (self) denom))
((eq? message 'get-numerator)
(lambda (self) numer))
(else #f)))))

3

13Lecture 23: Programming with Objects

Implementing make-subobject

(define (make-subobject super imp)
(lambda (message)
(if (eq? message ’super)
(lambda (self) super)
(let ((method (imp message)))
(if method
method
(super message))))))

14Lecture 23: Programming with Objects

Using Fractions

> (define half (make-fraction 1 2))
> (ask half 'value)
1/2

> (ask half 'get-denominator)
2
> (ask half 'add (make-number 1))
3/2
> (ask half 'add half)
1

15Lecture 23: Programming with Objects

> (trace ask)
> (trace eq?)
> (ask half 'add half)
|(ask #<procedure> add #<procedure>)

| (eq? add value)
| #f
| (eq? add get-denominator)
| #f
| (eq? add get-numerator)
| #f
| (eq? add value)
| #f
| (eq? add add)
| #t

| (ask #<procedure> value)
| |(eq? value value)
| |#t
| 1/2
| (ask #<procedure> value)
| |(eq? value value)
| |#t
| 1/2
|1
1

16Lecture 23: Programming with Objects

> (trace ask)
> (trace eq?)
> (ask half 'add half)
|(ask #<procedure> add #<procedure>)

| (eq? add value)
| #f
| (eq? add get-denominator)
| #f
| (eq? add get-numerator)
| #f
| (eq? add value)
| #f
| (eq? add add)
| #t

| (ask #<procedure> value)
| |(eq? value value)
| |#t
| 1/2
| (ask #<procedure> value)
| |(eq? value value)
| |#t
| 1/2
|1
1

make-number
make-fraction

17Lecture 23: Programming with Objects

Inheritance

Inheritance is using the definition of one
class to make another class

make-fraction uses make-number to
inherit the behaviors of number

18Lecture 23: Programming with Objects

Speaking about Inheritance

Fraction inherits from Number.

Fraction is a subclass of Number.

The superclass of Fraction is
Number.

Number

Fraction

4

19Lecture 23: Programming with Objects

PS6

Make an adventure game
programming with objects

Many objects in our game have
similar properties and behaviors,

so we use inheritance.

20Lecture 23: Programming with Objects

PS6 Classes
sim-object

physical-object place

mobile-object

thing person

student
police-officer

make-class is the
procedure for
constructing
objects in the

class class

student inherits from person

which inherits from mobile-object
which inherits from physical-object

which inherits from sim-object.

21Lecture 23: Programming with Objects

PS6 Objects
object

physical-object place

mobile-object

thing person

student police-officer

Cabal Hall Recursa

Alyssa P. Hacker

(make-place name)
evaluates to an object
that is an instance of

the class place.

22Lecture 23: Programming with Objects

Are there class hierarchies
like this in the “real world”
or just in fictional worlds
like Charlottansville?

23Lecture 23: Programming with Objects

Charge

• Monday:

– Quiz on GEB reading (depending on poll)

– History of Object-Oriented Programming

• PS6 due Friday

• Start thinking about PS9 project ideas

– Use the forum to find teammates and propose
ideas

