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Menu

• Review and finish Gödel’s Proof from 
Monday

• Discuss Quiz

• Computability
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Proof – General Idea

•Theorem: In any interesting 
axiomatic system, there are 
statements that cannot be 
proven either true or false.

• Proof: Find such a statement
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Gödel’s Statement

G: This statement does not have 
any proof in the system.

Possibilities:
1. G is true ⇒ G has no proof 

System is incomplete
2. G is false ⇒ G has a proof 

System is inconsistent
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Finishing The Proof

• Turn G into a statement in the 
Principia Mathematica system

• Is PM powerful enough to express 

“This statement does not have 
any proof in the PM system.”?
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How to express “does not have 
any proof in the system of PM”

• What does “have a proof of S in PM” mean?

– There is a sequence of steps that follow the 
inference rules that starts with the initial axioms 
and ends with S

• What does it mean to “not have any proof 
of S in PM”?

– There is no sequence of steps that follow the 
inference rules that starts with the initial axioms 
and ends with S



2

7Lecture 25: Gödel and Computability

Can PM express unprovability?

• There is no sequence of steps that follows 
the inference rules that starts with the 
initial axioms and ends with S

• Sequence of steps: 

T0, T1, T2, ..., TN

T0 must be the axioms
TN must include S
Every step must follow from the previous 

using an inference rule
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Can we express 

“This statement”?
• Yes!

–That’s the point of the TNT Chapter in GEB

• We can write turn every statement 
into a number, so we can turn “This 
statement does not have any proof 
in the system” into a number

9Lecture 25: Gödel and Computability

Gödel’s Proof
G: This statement does not have any 
proof in the system of PM.

If G is provable, PM would be inconsistent.

If G is unprovable, PM would be incomplete.

PM can express G.

Thus, PM cannot be complete and 

consistent!
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Generalization

All logical systems of any 
complexity are incomplete: 

there are statements that are 
true that cannot be proven 
within the system.
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Practical Implications

• Mathematicians will never be completely 
replaced by computers

– There are mathematical truths that cannot be 
determined mechanically

– We can build a computer that will prove only 
true theorems about number theory, but if it 
cannot prove something we do not know that 
that is not a true theorem.
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What does it mean for an axiomatic 
system to be complete and consistent?

Derives all true 
statements, and no false 
statements starting from a 
finite number of axioms 
and following mechanical 

inference rules.
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What does it mean for an axiomatic 
system to be complete and consistent?

It means the axiomatic system is weak.

Indeed, it is so weak, it cannot express:   
“This statement has no proof.”
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Incomplete
Axiomatic System

Derives 
some, but not all true 

statements, and no false 
statements starting from a 

finite number of axioms 
and following mechanical 

inference rules.

incomplete

Inconsistent
Axiomatic System

Derives 

all true 

statements, and some false 
statements starting from a 

finite number of axioms 

and following mechanical 

inference rules.

some false

statements
Pick one:
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Inconsistent Axiomatic System

Derives 

all true 

statements, and some false 

statements starting from a 

finite number of axioms 

and following mechanical 

inference rules.
some false 

statementsOnce you can prove one false statement,
everything can be proven!  false ⇒ anything
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Quiz Answers
1. b, e (read Tyson’s essay)

2. SS0 = “successor of the successor of 0” = 2

3. MU is not a theorem (read Chapter IX)

Results on these questions were quite poor!
Only 6 people got >= 4 points on quiz

Doing these reading may not have a great direct impact on 
your grade, but they are very interesting and worthwhile.

If that isn’t enough motivation, we’ll have another quiz 
some day next week (on the same material).
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Surprise Quiz?

Can this be a true statement:

Q: You will have a surprise quiz some day 
next week.

If the quiz is Friday, it is not a surprise.  Q is false.

Since the quiz can’t be Friday, if the quiz is not on Monday,

it isn’t a surprise if it is on Wednesday.  Q is false.

Since the quiz can’t be Wednesday, if is not a surprise quiz

if it is on Monday.  Q is false.

Your quiz score is (max last-quiz next-quiz)
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Question 5: Computer Scientists

First Compiler, COBOL5Grace Hopper

Awesome PS9 project9Yourself

Pancake sorting10Bill Gates

Teaches this class13David Evans

First programmer14Ada Byron

Computability (rest of today), 
cryptography (exam 1, ps4), models 
of computing (later)

16Alan Turing

Others receiving votes: Bach, Euclid, Godel, Escher, Doug Hofstadter, Aaron Bloomfield, Bjarne
Stroustrup, Charles Babbage, John Backus (2), Linus Torvalds, Steve Jobs, Steve Wozniak, 
Alonzo Church, Emil Post, Frances Allen, Gordon Moore, Herman Hollerith, James Cohoon, John 
Lach, John McCarthy, John von Neumann, Kaspersky, Kinga Dobolyi, Neil de Grasse Tyson, 
Noam Chomsky, Paul Reynolds, Peter Naur, Richard Stallman, Sid Mayer, Will Wright



4

19Lecture 25: Gödel and Computability

John Backus 
(1924-2007)

• Chemistry major at UVA (entered 
1943), flunked out first year

• Joined IBM as programmer in 
1950

• Developed Fortran, first 
commercially successful 
programming language and 
compiler

• Invented BNF (replacement 
grammars)

I flunked out every year. I 

never studied. I hated 

studying. I was just 

goofing around. It had the 

delightful consequence 

that every year I went to 

summer school in New 

Hampshire where I spent 

the summer sailing and 

having a nice time.
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John Backus on Simplicity
“Because it takes pages and pages of gobbledygook to describe 
how a programming language works, it’s hard to prove that a 
given program actually does what it’s supposed to. Therefore, 
programmers must learn not only this enormously complicated 
language but, to prove their programs will work, they must also 
learn a highly technical logical system in which to reason about
them. 

Now, in the kinds of systems I'm trying to build, you can 
write a program as essentially an equation, like equations in 
high school algebra, and the solution of that equation will be 
the program you want... The entire language can be described 
in one page. But there’s a catch: They’re what I call applicative 
(functional) language, which means there's no concept of a 
stored memory at all. ...”
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FL Programming

def f ≡ iszero → ~0 
; + o [f o dec, id]

e1 → e2 ; e3 (if e1 e2 e3)
~0 (lambda (x) 0)
o composition

No need to name parameters!  All expressions are applied 
to whatever the function is applied to.
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Question 4
• What is computer science?

• Answer for this course: study of 
information processes

– How to describe them precisely (procedures)

– How to predict their properties (analysis, so 
far mostly running time)

– What problems can be solved by different 
types of procedures (algorithms, polynomial)

finish eventually (now)
finish in a 
reasonable amount 
of time (later)
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Computer Science

• Another common definition (Knuth’s): 

“The study of algorithms”
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Algorithms

• What’s an algorithm?

A procedure that always terminates.

• What’s a procedure?

A precise (mechanizable) description of a 
process.
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Computability
• Is there an algorithm that solves a problem?

• Computable (decidable) problems:

– There is an algorithm that solves the problem.

– Make a photomosaic, sorting, drug discovery, 
winning chess (it doesn’t mean we know the 
algorithm, but there is one)

• Uncomputable (undecidable) problems:

– There is no algorithm that solves the problem.

There might be a procedure, but it 

doesn’t always terminate.
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Are there any uncomputable 
problems?
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The Hapting Problem

Input: a specification of a 
procedure P

Output: If evaluating an 
application of P halts, output 
true.  Otherwise, output false.
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Alan Turing (1912-1954)
• Codebreaker at Bletchley Park

– Broke Enigma Cipher

– Perhaps more important than Lorenz
• Published On Computable Numbers … (1936)

– Introduced the Halting Problem

– Formal model of computation 

(now known as “Turing Machine”)

• After the war: convicted of homosexuality 
(then a crime in Britain), committed suicide 
eating cyanide apple 5 years after 

Gödel’s proof!
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Halting Problem

Define a procedure halts? that takes a 
procedure specification and evaluates to 
#t if evaluating an application of the 
procedure would terminate, and to #f if 
evaluating an application of the would not 
terminate.

(define (halts? proc) … )
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Examples

> (halts? ‘(lambda () (+ 3 3)))
#t
> (halts? ‘(lambda ()

(define (f) (f)) 
(f)))

#f
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Halting Examples
> (halts? `(lambda () 

(define (fact n)
(if (= n 1) 1 (* n (fact (- n 1)))))

(fact 7)))
#t
> (halts? `(lambda () (fact 0)))
#f
> (halts? `(lambda () 

(define (fibo n)
(if (or (= n 1) (- n 2))) 1

(+ (fibo (- n 1)) (fibo (- n 2))))))
(fibo 100))

#t
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Can we define halts? ?

• We could try for a really long time, get 
something to work for simple examples, 
but could we solve the problem – make it 
work for all possible inputs?
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Informal Proof

(define (paradox)
(if (halts? paradox)

(loop-forever)
#t))

If paradox halts, the if test is true and

it evaluates to (loop-forever) - it doesn’t halt!

If paradox doesn’t halt, the if test if false,

and it evaluates to #t.  It halts!

34Lecture 25: Gödel and Computability

Charge

• Friday: Other uncomputable problems: now 
we have one uncomputable problem, how 
do we decide if a new problem is 
uncomputable

– Why virus scanners will never work perfectly

• PS6: will be accepted Monday without 
penalty or extension required


