
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 25: Lecture 25:
GGöödel and del and
ComputabilityComputability

Halting Problems Hockey Team

2Lecture 25: Gödel and Computability

Menu

• Review and finish Gödel’s Proof from
Monday

• Discuss Quiz

• Computability

3Lecture 25: Gödel and Computability

Proof – General Idea

•Theorem: In any interesting
axiomatic system, there are
statements that cannot be
proven either true or false.

• Proof: Find such a statement

4Lecture 25: Gödel and Computability

Gödel’s Statement

G: This statement does not have
any proof in the system.

Possibilities:
1. G is true ⇒ G has no proof

System is incomplete
2. G is false ⇒ G has a proof

System is inconsistent

5Lecture 25: Gödel and Computability

Finishing The Proof

• Turn G into a statement in the
Principia Mathematica system

• Is PM powerful enough to express

“This statement does not have
any proof in the PM system.”?

6Lecture 25: Gödel and Computability

How to express “does not have
any proof in the system of PM”

• What does “have a proof of S in PM” mean?

– There is a sequence of steps that follow the
inference rules that starts with the initial axioms
and ends with S

• What does it mean to “not have any proof
of S in PM”?

– There is no sequence of steps that follow the
inference rules that starts with the initial axioms
and ends with S

2

7Lecture 25: Gödel and Computability

Can PM express unprovability?

• There is no sequence of steps that follows
the inference rules that starts with the
initial axioms and ends with S

• Sequence of steps:

T0, T1, T2, ..., TN

T0 must be the axioms
TN must include S
Every step must follow from the previous

using an inference rule

8Lecture 25: Gödel and Computability

Can we express

“This statement”?
• Yes!

–That’s the point of the TNT Chapter in GEB

• We can write turn every statement
into a number, so we can turn “This
statement does not have any proof
in the system” into a number

9Lecture 25: Gödel and Computability

Gödel’s Proof
G: This statement does not have any
proof in the system of PM.

If G is provable, PM would be inconsistent.

If G is unprovable, PM would be incomplete.

PM can express G.

Thus, PM cannot be complete and

consistent!

10Lecture 25: Gödel and Computability

Generalization

All logical systems of any
complexity are incomplete:

there are statements that are
true that cannot be proven
within the system.

11Lecture 25: Gödel and Computability

Practical Implications

• Mathematicians will never be completely
replaced by computers

– There are mathematical truths that cannot be
determined mechanically

– We can build a computer that will prove only
true theorems about number theory, but if it
cannot prove something we do not know that
that is not a true theorem.

12Lecture 25: Gödel and Computability

What does it mean for an axiomatic
system to be complete and consistent?

Derives all true
statements, and no false
statements starting from a
finite number of axioms
and following mechanical

inference rules.

3

13Lecture 25: Gödel and Computability

What does it mean for an axiomatic
system to be complete and consistent?

It means the axiomatic system is weak.

Indeed, it is so weak, it cannot express:
“This statement has no proof.”

14Lecture 25: Gödel and Computability

Incomplete
Axiomatic System

Derives
some, but not all true

statements, and no false
statements starting from a

finite number of axioms
and following mechanical

inference rules.

incomplete

Inconsistent
Axiomatic System

Derives

all true

statements, and some false
statements starting from a

finite number of axioms

and following mechanical

inference rules.

some false

statements
Pick one:

15Lecture 25: Gödel and Computability

Inconsistent Axiomatic System

Derives

all true

statements, and some false

statements starting from a

finite number of axioms

and following mechanical

inference rules.
some false

statementsOnce you can prove one false statement,
everything can be proven! false ⇒ anything

16Lecture 25: Gödel and Computability

Quiz Answers
1. b, e (read Tyson’s essay)

2. SS0 = “successor of the successor of 0” = 2

3. MU is not a theorem (read Chapter IX)

Results on these questions were quite poor!
Only 6 people got >= 4 points on quiz

Doing these reading may not have a great direct impact on
your grade, but they are very interesting and worthwhile.

If that isn’t enough motivation, we’ll have another quiz
some day next week (on the same material).

17Lecture 25: Gödel and Computability

Surprise Quiz?

Can this be a true statement:

Q: You will have a surprise quiz some day
next week.

If the quiz is Friday, it is not a surprise. Q is false.

Since the quiz can’t be Friday, if the quiz is not on Monday,

it isn’t a surprise if it is on Wednesday. Q is false.

Since the quiz can’t be Wednesday, if is not a surprise quiz

if it is on Monday. Q is false.

Your quiz score is (max last-quiz next-quiz)

18Lecture 25: Gödel and Computability

Question 5: Computer Scientists

First Compiler, COBOL5Grace Hopper

Awesome PS9 project9Yourself

Pancake sorting10Bill Gates

Teaches this class13David Evans

First programmer14Ada Byron

Computability (rest of today),
cryptography (exam 1, ps4), models
of computing (later)

16Alan Turing

Others receiving votes: Bach, Euclid, Godel, Escher, Doug Hofstadter, Aaron Bloomfield, Bjarne
Stroustrup, Charles Babbage, John Backus (2), Linus Torvalds, Steve Jobs, Steve Wozniak,
Alonzo Church, Emil Post, Frances Allen, Gordon Moore, Herman Hollerith, James Cohoon, John
Lach, John McCarthy, John von Neumann, Kaspersky, Kinga Dobolyi, Neil de Grasse Tyson,
Noam Chomsky, Paul Reynolds, Peter Naur, Richard Stallman, Sid Mayer, Will Wright

4

19Lecture 25: Gödel and Computability

John Backus
(1924-2007)

• Chemistry major at UVA (entered
1943), flunked out first year

• Joined IBM as programmer in
1950

• Developed Fortran, first
commercially successful
programming language and
compiler

• Invented BNF (replacement
grammars)

I flunked out every year. I

never studied. I hated

studying. I was just

goofing around. It had the

delightful consequence

that every year I went to

summer school in New

Hampshire where I spent

the summer sailing and

having a nice time.

20Lecture 25: Gödel and Computability

John Backus on Simplicity
“Because it takes pages and pages of gobbledygook to describe
how a programming language works, it’s hard to prove that a
given program actually does what it’s supposed to. Therefore,
programmers must learn not only this enormously complicated
language but, to prove their programs will work, they must also
learn a highly technical logical system in which to reason about
them.

Now, in the kinds of systems I'm trying to build, you can
write a program as essentially an equation, like equations in
high school algebra, and the solution of that equation will be
the program you want... The entire language can be described
in one page. But there’s a catch: They’re what I call applicative
(functional) language, which means there's no concept of a
stored memory at all. ...”

21Lecture 25: Gödel and Computability

FL Programming

def f ≡ iszero → ~0
; + o [f o dec, id]

e1 → e2 ; e3 (if e1 e2 e3)
~0 (lambda (x) 0)
o composition

No need to name parameters! All expressions are applied
to whatever the function is applied to.

22Lecture 25: Gödel and Computability

Question 4
• What is computer science?

• Answer for this course: study of
information processes

– How to describe them precisely (procedures)

– How to predict their properties (analysis, so
far mostly running time)

– What problems can be solved by different
types of procedures (algorithms, polynomial)

finish eventually (now)
finish in a
reasonable amount
of time (later)

23Lecture 25: Gödel and Computability

Computer Science

• Another common definition (Knuth’s):

“The study of algorithms”

24Lecture 25: Gödel and Computability

Algorithms

• What’s an algorithm?

A procedure that always terminates.

• What’s a procedure?

A precise (mechanizable) description of a
process.

5

25Lecture 25: Gödel and Computability

Computability
• Is there an algorithm that solves a problem?

• Computable (decidable) problems:

– There is an algorithm that solves the problem.

– Make a photomosaic, sorting, drug discovery,
winning chess (it doesn’t mean we know the
algorithm, but there is one)

• Uncomputable (undecidable) problems:

– There is no algorithm that solves the problem.

There might be a procedure, but it

doesn’t always terminate.

26Lecture 25: Gödel and Computability

Are there any uncomputable
problems?

27Lecture 25: Gödel and Computability

The Hapting Problem

Input: a specification of a
procedure P

Output: If evaluating an
application of P halts, output
true. Otherwise, output false.

28Lecture 25: Gödel and Computability

Alan Turing (1912-1954)
• Codebreaker at Bletchley Park

– Broke Enigma Cipher

– Perhaps more important than Lorenz
• Published On Computable Numbers … (1936)

– Introduced the Halting Problem

– Formal model of computation

(now known as “Turing Machine”)

• After the war: convicted of homosexuality
(then a crime in Britain), committed suicide
eating cyanide apple 5 years after

Gödel’s proof!

29Lecture 25: Gödel and Computability

Halting Problem

Define a procedure halts? that takes a
procedure specification and evaluates to
#t if evaluating an application of the
procedure would terminate, and to #f if
evaluating an application of the would not
terminate.

(define (halts? proc) …)

30Lecture 25: Gödel and Computability

Examples

> (halts? ‘(lambda () (+ 3 3)))
#t
> (halts? ‘(lambda ()

(define (f) (f))
(f)))

#f

6

31Lecture 25: Gödel and Computability

Halting Examples
> (halts? `(lambda ()

(define (fact n)
(if (= n 1) 1 (* n (fact (- n 1)))))

(fact 7)))
#t
> (halts? `(lambda () (fact 0)))
#f
> (halts? `(lambda ()

(define (fibo n)
(if (or (= n 1) (- n 2))) 1

(+ (fibo (- n 1)) (fibo (- n 2))))))
(fibo 100))

#t

32Lecture 25: Gödel and Computability

Can we define halts? ?

• We could try for a really long time, get
something to work for simple examples,
but could we solve the problem – make it
work for all possible inputs?

33Lecture 25: Gödel and Computability

Informal Proof

(define (paradox)
(if (halts? paradox)

(loop-forever)
#t))

If paradox halts, the if test is true and

it evaluates to (loop-forever) - it doesn’t halt!

If paradox doesn’t halt, the if test if false,

and it evaluates to #t. It halts!

34Lecture 25: Gödel and Computability

Charge

• Friday: Other uncomputable problems: now
we have one uncomputable problem, how
do we decide if a new problem is
uncomputable

– Why virus scanners will never work perfectly

• PS6: will be accepted Monday without
penalty or extension required

