
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Le
ct
u
re
 2
6
:

Le
ct
u
re
 2
6
:

P
ro
vi
n
g

P
ro
vi
n
g

U
n
c

U
n
c o
m
p
u
ta
b
ili
ty

o
m
p
u
ta
b
ili
ty

Visualization of E8

2Lecture 26: Proving Computability

The Halting Problem

Input: a specification of a
procedure P

Output: If evaluating an
application of P halts, output
true. Otherwise, output false.

3Lecture 26: Proving Computability

halts? Examples
> (halts? ‘(lambda () (+ 3 3)))
#t
> (halts? ‘(lambda () (define (f) (f)) (f)))
#f
> (halts? `(lambda ()

(define (fibo n)
(if (or (= n 1) (- n 2))) 1

(+ (fibo (- n 1)) (fibo (- n 2))))))
(fibo 100))

#t

4Lecture 26: Proving Computability

Halting Examples

> (halts? `(lambda ()
(define (sum-of-two-primes? n)

;;; try all possibilities...)
(define (test-goldbach n)

(if (not (sum-of-two-primes? n))
#f ; Goldbach Conjecture wrong
(test-goldbach (+ n 2))))

(test-goldbach 2))
?

Goldbach Conjecture (see GEB, p. 394):
Every even integer can be written as the sum of two primes.

5Lecture 26: Proving Computability

Can we define halts? ?

• We could try for a really long time, get
something to work for simple examples,
but could we solve the problem – make it
work for all possible inputs?

6Lecture 26: Proving Computability

Informal Proof

(define (paradox)
(if (halts? ‘paradox)

(loop-forever)
#t))

If paradox halts, the if test is true and
it evaluates to (loop-forever) - it doesn’t halt!

If paradox doesn’t halt, the if test if false,
and it evaluates to #t. It halts!

2

7Lecture 26: Proving Computability

Proof by Contradiction

1. Show X is nonsensical.

2. Show that if you have A you can make X.

3. Therefore, A must not exist.

X = paradox
A = halts? algorithm

8Lecture 26: Proving Computability

How convincing is our
Halting Problem proof?

(define (paradox)
(if (halts? ‘paradox)

(loop-forever)
#t))

If contradict-halts halts, the if test is true and it evaluates to
(loop-forever) - it doesn’t halt!

If contradict-halts doesn’t halt, the if test if false, and it
evaluates to #t. It halts!

This “proof” assumes Scheme exists and is consistent!
Scheme is too complex to believe this...we need a
simpler model of computation (in two weeks).

9Lecture 26: Proving Computability

“Evaluates to 3” Problem

Input: A procedure specification P

Output: true if evaluating (P) would
result in 3; false otherwise.

Is “Evaluates to 3” computable?

10Lecture 26: Proving Computability

Proof by Contradiction

1. Show X is nonsensical.

2. Show that if you have A you can make X.

3. Therefore, A must not exist.

X = halts? algorithm
A = evaluates-to-3? algorithm

11Lecture 26: Proving Computability

Undecidability Proof

Suppose we could define evaluates-to-3? that
decides it. Then we could define halts?:

(define (halts? P)
(evaluates-to-3?

‘(lambda () (begin (P) 3))))

if #t: it evaluates to 3, so we know (P) must halt.

if #f: the only way it could not evaluate to 3, is if
(P) doesn’t halt. (Note: assumes (P) cannot
produce an error.)

12Lecture 26: Proving Computability

Hello-World Problem

Input: An expression specification E

Output: true if evaluating E would
print out “Hello World!”; false
otherwise.

Is the Hello-World Problem computable?

3

13Lecture 26: Proving Computability

Uncomputability Proof

Suppose we could define prints-hello-world?
that solves it. Then we could define halts?:

(define (halts? P)
(prints-hello-world?

‘(begin ((remove-prints P))
(print “Hello World!”))))

14Lecture 26: Proving Computability

Proof by Contradiction

1. Show X is nonsensical.

2. Show that if you have A you can make X.

3. Therefore, A must not exist.

X = halts? algorithm
A = prints-hello-world? algorithm

15Lecture 26: Proving Computability

Charge

• Next week:

– Monday: computability of virus detection, AliG
problem; history of Object-Oriented programming

– Wednesday, Friday: implementing interpreters

• After next week:

– Scheme is very complicated (requires more than 1
page to define)

– To have a convincing proof, we need a simpler
programming model in which we can write
paradox: Turing’s model

