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2Lecture 26: Proving Computability

The Halting Problem

Input: a specification of a 
procedure P

Output: If evaluating an 
application of P halts, output 
true.  Otherwise, output false.
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halts? Examples
> (halts? ‘(lambda () (+ 3 3)))
#t
> (halts? ‘(lambda () (define (f) (f)) (f)))
#f
> (halts? `(lambda () 

(define (fibo n)
(if (or (= n 1) (- n 2))) 1

(+ (fibo (- n 1)) (fibo (- n 2))))))
(fibo 100))

#t

4Lecture 26: Proving Computability

Halting Examples

> (halts? `(lambda () 
(define (sum-of-two-primes? n)

;;; try all possibilities... ) 
(define (test-goldbach n)

(if (not (sum-of-two-primes? n))
#f ; Goldbach Conjecture wrong
(test-goldbach (+ n 2))))

(test-goldbach 2)) 
?

Goldbach Conjecture (see GEB, p. 394):
Every even integer can be written as the sum of two primes. 
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Can we define halts? ?

• We could try for a really long time, get 
something to work for simple examples, 
but could we solve the problem – make it 
work for all possible inputs?
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Informal Proof

(define (paradox)
(if (halts? ‘paradox)

(loop-forever)
#t))

If paradox halts, the if test is true and
it evaluates to (loop-forever) - it doesn’t halt!

If paradox doesn’t halt, the if test if false,
and it evaluates to #t.  It halts!
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Proof by Contradiction

1. Show X is nonsensical.

2. Show that if you have A you can make X.

3. Therefore, A must not exist.

X = paradox
A = halts? algorithm
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How convincing is our 
Halting Problem proof?

(define (paradox)
(if (halts? ‘paradox)

(loop-forever)
#t))

If contradict-halts halts, the if test is true and it evaluates to 
(loop-forever) - it doesn’t halt!

If contradict-halts doesn’t halt, the if test if false, and it 
evaluates to #t.  It halts!

This “proof” assumes Scheme exists and is consistent!
Scheme is too complex to believe this...we need a 
simpler model of computation (in two weeks).
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“Evaluates to 3” Problem

Input: A procedure specification P

Output: true if evaluating (P ) would 
result in 3; false otherwise.

Is “Evaluates to 3” computable?
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Proof by Contradiction

1. Show X is nonsensical.

2. Show that if you have A you can make X.

3. Therefore, A must not exist.

X = halts? algorithm
A = evaluates-to-3? algorithm
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Undecidability Proof

Suppose we could define evaluates-to-3? that 
decides it.  Then we could define halts?:

(define (halts? P)
(evaluates-to-3? 

‘(lambda () (begin (P) 3))))

if #t: it evaluates to 3, so we know (P) must halt.

if #f: the only way it could not evaluate to 3, is if 
(P) doesn’t halt.  (Note: assumes (P) cannot 
produce an error.)
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Hello-World Problem

Input: An expression specification E

Output: true if evaluating E would 
print out “Hello World!”; false
otherwise.

Is the Hello-World Problem computable?
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Uncomputability Proof

Suppose we could define prints-hello-world?
that solves it.  Then we could define halts?:

(define (halts? P)
(prints-hello-world? 

‘(begin ((remove-prints P))
(print “Hello World!”))))
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Proof by Contradiction

1. Show X is nonsensical.

2. Show that if you have A you can make X.

3. Therefore, A must not exist.

X = halts? algorithm
A = prints-hello-world? algorithm
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Charge

• Next week:

– Monday: computability of virus detection, AliG
problem; history of Object-Oriented programming

– Wednesday, Friday: implementing interpreters

• After next week:

– Scheme is very complicated (requires more than 1 
page to define) 

– To have a convincing proof, we need a simpler 
programming model in which we can write 
paradox: Turing’s model


