
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 27: Lecture 27: 

Viruses and Viruses and 

ObjectObject--Oriented Oriented 

ProgrammingProgramming

Avian Flu Virus

2Lecture 27: Viruses and OOP

From Paul Graham’s “Undergraduation”:

My friend Robert learned a lot by writing network software 
when he was an undergrad. One of his projects was to connect 
Harvard to the Arpanet; it had been one of the original nodes, 
but by 1984 the connection had died. Not only was this work 
not for a class, but because he spent all his time on it and 
neglected his studies, he was kicked out of school for a year. 
... When Robert got kicked out of grad school for writing the 
Internet worm of 1988, I envied him enormously for finding a 
way out without the stigma of failure. 
... It all evened out in the end, and now he’s a professor at 
MIT. But you’ll probably be happier if you don’t go to that 
extreme; it caused him a lot of worry at the time. 

3 years of probation, 400 hours of community service, $10,000+ fine

3Lecture 27: Viruses and OOP

Morris Internet Worm (1988)
• P = fingerd

– Program used to query user status

– Worm also attacked other programs

• I = “nop400 pushl $68732f pushl $6e69622f movl

sp,r10 pushl $0 pushl $0 pushl r10 pushl $3 movl

sp,ap chmk $3b”

(is-worm? ‘(P I)) should evaluate to #t

• Worm infected several thousand computers 
(~10% of Internet in 1988)

4Lecture 27: Viruses and OOP

Worm Detection Problem

Input: A program P and input I

Output: true if evaluating (P I) would cause 
a remote computer to be “infected”.

Virus Detection Problem
Input: A program specification P

Output: true if evaluating (P) would cause a 
file on the host computer to be “infected”. 

5Lecture 27: Viruses and OOP

Uncomputability Proof

Suppose we could define is-virus? Then:

(define (halts? P)
(is-virus? 
‘(lambda ()
(begin ((remove-infects P)) 

(infect-files)))))

6Lecture 27: Viruses and OOP

Uncomputability Proof

(define (halts? P)
(is-virus? 
‘(lambda ()
(begin ((remove-infects P)) 

(infect-files)))))

#t: Since it is a virus, we know (infect-files) was 
evaluated, and P must halt.

#f: The (infect-files) would not evaluate, so P
must not halt.

Can we make 
remove-
infects?

Yes, just remove
all file writes.



2

7Lecture 27: Viruses and OOP

“Solving” Undecidable Problems

• No perfect solution exists:

– Undecidable means there is no procedure that:

• Always gives the correct answer

• Always terminates

• Must give up one of these to “solve”
undecidable problems

– Giving up #2 is not acceptable in most cases

– Must give up #1

• Or change the problem: e.g., detect file 
infections during an execution

8Lecture 27: Viruses and OOP

Conclusion?

• Anti-Virus programs cannot exist!

“The Art of Computer Virus 
Research and Defense”
Peter Szor, Symantec

9Lecture 27: Viruses and OOP

Actual is-virus? Programs
• Give the wrong answer sometimes

– “False positive”: say P is a virus when it isn’t

– “False negative”: say P is safe when it is

• Database of known viruses: if P matches one 
of these, it is a virus

• Clever virus authors can make viruses that 
change each time they propagate

– Emulate program for a limited number of steps; 
if it doesn’t do anything bad, assume it is safe

10Lecture 27: Viruses and OOP

Proof Recap

• If we had is-virus? we could define halts?

• We know halts? is undecidable

• Hence, we can’t have is-virus?

• Thus, we know is-virus? is undecidable

11Lecture 27: Viruses and OOP

History of
Object-Oriented 
Programming

12Lecture 27: Viruses and OOP

Pre-History:
MIT’s Project Whirlwind (1947-1960s)

Jay Forrester



3

13Lecture 27: Viruses and OOP

Why Whirlwind?

0

10000

20000

30000

40000

50000

60000

1940 1950 1960 1970 1980 1990 2000 2010 2020

Hiroshima (12kt), Nagasaki (20kt)

First H-Bomb (10Mt)

Tsar Bomba (largest ever)

B83 (1.2Mt), largest
in currently active arsenal

from Class 2...

Soviet Union test 
atomic bomb 
(Aug 29, 1949)

14Lecture 27: Viruses and OOP

Whirlwind Innovations

Magnetic Core Memory
(first version used vacuum tubes)

15Lecture 27: Viruses and OOP

Sketchpad

• Ivan Sutherland, 
1963 (PhD thesis 
supervised by 
Claude Shannon)

• Interactive 
drawing program

• Light pen
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-574.pdf

16Lecture 27: Viruses and OOP

Components 
in Sketchpad

17Lecture 27: Viruses and OOP

Objects in Sketchpad
In the process of making the Sketchpad system operate, a few very 

general functions were developed which make no reference at all to the 
specific types of entities on which they operate. These general functions 

give the Sketchpad system the ability to operate on a wide range of 
problems. The motivation for making the functions as general as 

possible came from the desire to get as much result as possible from the 
programming effort involved. For example, the general function for 

expanding instances makes it possible for Sketchpad to handle any fixed 

geometry subpicture. The rewards that come from implementing general 
functions are so great that the author has become reluctant to write any 

programs for specific jobs.
Each of the general functions implemented in the Sketchpad system 

abstracts, in some sense, some common property of pictures 
independent of the specific subject matter of the pictures themselves. 

Ivan Sutherland, Sketchpad: a Man-Machine 
Graphical Communication System, 1963 (major 

influence on Alan Kay developoing OOP in 1970s)

18Lecture 27: Viruses and OOP

Simula

• Considered the first “object-oriented”
programming language

• Language designed for simulation by 
Kristen Nygaard and Ole-Johan Dahl 
(Norway, 1962)

• Had special syntax for defining classes 
that packages state and procedures 
together



4

19Lecture 27: Viruses and OOP

Counter in Simula

class counter; 

integer count;

begin

procedure reset(); count := 0; end;

procedure next(); 

count := count + 1; end;

integer procedure current();

current := count; end;

end

20Lecture 27: Viruses and OOP

XEROX Palo Alto Research Center (PARC)

1970s:

• Bitmapped display

• Graphical User Interface 

– Steve Jobs paid $1M to visit and PARC, and 
returned to make Apple Lisa/Mac

• Ethernet

• First personal computer (Alto)

• PostScript Printers

• Object-Oriented Programming

21Lecture 27: Viruses and OOP

Dynabook, 1972
(Just a model)

“Don’t worry about what 
anybody else is going to do…
The best way to predict the 
future is to invent it. Really 

smart people with 
reasonable funding can do 
just about anything that 

doesn't violate too many of 
Newton's Laws!”

— Alan Kay, 1971

22Lecture 27: Viruses and OOP

Dynabook 1972
• Tablet computer

• Intended as tool for learning

• Kay wanted children to program it also

• Hallway argument, Kay claims you could 
define “the most powerful language in the 
world in a page of code”

• Proof: Smalltalk 

– Scheme is as powerful, but takes two pages

– Before the end of the class, we will see an 
equally powerful language that fits in ¼ page

23Lecture 27: Viruses and OOP

BYTE 
Magazine, 
August 
1981

24Lecture 27: Viruses and OOP

Smalltalk

• Everything is an object

• Objects communicate by sending and 
receiving messages

• Objects have their own state (which may 
contain other objects)

• How do you do 3 + 4?

send the object 3 the message “+ 4”



5

25Lecture 27: Viruses and OOP

Counter in Smalltalk

class name counter

instance variable names count

new count <- 0

next count <- count + 1

current ^ count

26Lecture 27: Viruses and OOP

Counter in Python

class counter: 
def __init__(self): self._count = 0
def rest(self): self._count = 0
def next(self): self._count = self._count + 1
def current(self): return self._count

counter() creates a new counter using the __init__ method
_count is the instance variable (_ is just a naming convention)

27Lecture 27: Viruses and OOP

Who was the first 
object-oriented 
programmer?

28Lecture 27: Viruses and OOP

By the word operation, we mean any process which 
alters the mutual relation of two or more things, be this 
relation of what kind it may. This is the most general 
definition, and would include all subjects in the 
universe.  Again, it might act upon other things besides 
number, were objects found whose mutual fundamental 
relations could be expressed by those of the abstract 
science of operations, and which should be also 
susceptible of adaptations to the action of the operating 
notation and mechanism of the engine... Supposing, for 
instance, that the fundamental relations of pitched 
sounds in the science of harmony and of musical 
composition were susceptible of such expression and 
adaptations, the engine might compose elaborate and 
scientific pieces of music of any degree of complexity or 
extent. Ada, Countess of Lovelace, around 1843

29Lecture 27: Viruses and OOP

Charge

• Chapter 12 and PS7 out now: start 
reading Chapter 12 before next class

• The statement “There will be a surprise 
quiz some day this week” may still be true

• Wednesday: one more computability 
problem (“the AliG problem”); interpreters 
and Python


