
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 28: Lecture 28:

Implementing Implementing

InterpretersInterpreters

2Lecture 28: Implementing Interpreters

Why learn
Python?

3Lecture 28: Implementing Interpreters

Reason 1: Vocational Skill

Python

Java

SQL

Scheme

Job listings at monster.com in Virginia
(27 March 2007, postings in last 3 months):

770 $35-200K

27 $40-200K

55 $100-999K

1138 $60-400K
PS5, PS8 & 9

4Lecture 28: Implementing Interpreters

“S
ch
e
m
e
”
Jo
b
s

5Lecture 28: Implementing Interpreters

Reason 2: Expanding Minds

Languages change the way we think.

The more languages you know, the
more different ways you have of
thinking about (and solving) problems.

6Lecture 28: Implementing Interpreters

“Jamais Jamais Jamais” from Harmonice Musices
Odhecaton A. Printed by Ottaviano Dei Petrucci in

1501 (first music with movable type)

2

7Lecture 28: Implementing Interpreters

J S Bach, “Coffee Cantata”,
BWV 211 (1732)
www.npj.com/homepage/teritowe/jsbhand.html

“Jamais Jamais Jamais” from

Harmonice Musices Odhecaton A.
(1501)

8Lecture 28: Implementing Interpreters

Reason 3: Deepening Understanding

By seeing how the same concepts we
encountered in Scheme are
implemented by a different language,
you will understand those concepts
better (especially classes/objects,
assignment, data abstraction).

9Lecture 28: Implementing Interpreters

Reason 4: Building Confidence

By learning Python (mostly) on your
own, the next time you encounter a
problem that is best solved using a
language you don’t know, you will be
confident you can learn it (rather than
trying to use the wrong tool to solve the
problem).

10Lecture 28: Implementing Interpreters

Reason 5: Fun

Programming in Python is fun.

Especially because:
• It is an elegant and simple language
• Most programs mean what you think they mean
• It is dynamic and interactive
• It can be used to build web applications (PS8, PS9)
• It is named after Monty Python’s Flying Circus
• It was designed by someone named Guido.

11Lecture 28: Implementing Interpreters

Python
• A universal programming language

– Everything you can compute in Scheme you can
compute in Python, and vice versa

• Imperative Language

– Designed to support a programming where most
of the work is done using assignment
statements: x = e

• Object-Oriented Language

– Every data thing is an object

– Built in support for classes, inheritance

12Lecture 28: Implementing Interpreters

Learning New Languages
• Syntax: Where the {, ;, $, etc. all go

– If you can understand a BNF grammar, this is easy

• Semantics: What does it mean

– Learning the evaluation rules

– Harder, but most programming languages have very
similar evaluation rules

• Style

– What are the idioms and customs of experienced
programmers in that language?

• Takes many years to learn

• Need it to be a “professional” Python programmer, but not to
make a useful program

3

13Lecture 28: Implementing Interpreters

Python If

Instruction ::= if (Expression) :
Block

Evaluate Expression. If it evaluates
to true, evaluate the Block.

It is similar to (if Expression (begin Statements))
Differences:
Indenting and new lines matter!
Changing the indentation changes meaning of code

What “true” means:
Scheme: anything that is not #f.
Python: anything that is not False, None, 0,

and empty string or container

14Lecture 28: Implementing Interpreters

Computability in Theory and
Practice

(Intellectual Computability
Discussion on TV Video)

15Lecture 28: Implementing Interpreters

Ali G Problem
• Input: a list of 2 numbers with up to d
digits each

• Output: the product of the 2 numbers

Is it computable?
Yes – a straightforward algorithm

solves it. Using elementary
multiplication techniques it is O(d2)

Can real computers solve it?

18Lecture 28: Implementing Interpreters

Ali G was Right!

• Theory assumes ideal computers:

– Unlimited, perfect memory

– Unlimited (finite) time

• Real computers have:

– Limited memory, time, power outages, flaky
programming languages, etc.

– There are many computable problems we cannot
solve with real computer: the actual inputs do
matter (in practice, but not in theory!)

4

19Lecture 28: Implementing Interpreters

Implementing
Interpreters

20Lecture 28: Implementing Interpreters

Inventing a Language
• Design the grammar

– What strings are in the language?

– Use BNF to describe all the strings in the
language

• Make up the evaluation rules

– Describe what everything the grammar can
produce means

• Build an evaluator

– A procedure that evaluates expressions in the
language

21Lecture 28: Implementing Interpreters

Is this an exaggeration?

It is no exaggeration to regard this as the most
fundamental idea in programming:

The evaluator, which determines the
meaning of expressions in the
programming language, is just another

program.

To appreciate this point is to change our images of
ourselves as programmers. We come to see
ourselves as designers of languages, rather than
only users of languages designed by others.

(SICP, p. 360)

22Lecture 28: Implementing Interpreters

Environmental Model of Evaluation
1. To evaluate a combination, evaluate all the

subexpressions and apply the value of the first
subexpression to the values of the other
subexpressions.

2. To apply a compound procedure to a set of
arguments, evaluate the body of the procedure
in a new environment. To construct this
environment, make a new frame with an
environment pointer that is the environment of
the procedure that contains places with the

formal parameters bound to the arguments.

23Lecture 28: Implementing Interpreters

EvalEval

ApplyApply

Eval and Apply
are defined in
terms of each
other.

24Lecture 28: Implementing Interpreters

def meval(expr, env):
if isPrimitive(expr):
return evalPrimitive(expr)

elif isConditional(expr):
return evalConditional(expr, env)

elif isLambda(expr):
return evalLambda(expr, env)

elif isDefinition(expr):
evalDefinition(expr, env)

elif isName(expr):
return evalName(expr, env)

elif isApplication(expr):
return evalApplication(expr, env)

else:
evalError ("Unknown expression type: " + str(expr))

Implementing
meval

5

25Lecture 28: Implementing Interpreters

def mapply(proc, operands):
if (isPrimitiveProcedure(proc)):

return proc(operands)
elif isinstance(proc, Procedure):

params = proc.getParams()
newenv = Environment(proc.getEnvironment())
if len(params) != len(operands):

evalError ("Parameter length mismatch: ...")
for i in range(0, len(params)):

newenv.addVariable(params[i], operands[i])
return meval(proc.getBody(), newenv)

else:
evalError("Application of non-procedure: %s" % (proc))

Implementing
mapply

26Lecture 28: Implementing Interpreters

Charge

• Friday: Implementing the rest of the
interpreter: the evaluation rules,
environments, procedures

• Next week: changing the evaluation rules

• Don’t wait any longer to start PS7

• The statement, “There will be a surprise
quiz someday this week” might still be
true

