Lecture 30:

CS150: Computer Science .
University of Virginia David Evans
Computer Science http://www.cs.virginia.edu/evans

Menu

« Finishing Charme Interpreter
— Application
« Lazy Evaluation

~ -
Lecture 30: Laziness 2 iy Computer Science |

def meval(expr, env):

elif isLambda(expr):
return evalLambda(expr, env)

elif isApplication(expr):
return evalApplication(expr, env)

Implementing Procedures

What do we need to record?

\ Environment
i pointer

7= -
Lecture 30: Laziness 3 fii Computer Science,

(+xx)
Input parameters
(in mouth) Procedure Body
Lecture 30: Laziness 4 !TET! CO‘“P}‘,FS\"“,SN_?;?&E?H

Procedure Class

class Procedure:

def __init__(self, params, body, env):
self._params = params
self._body = body
self._env = env

def getParams(self):
return self._params

def getBody(self):
return self._body

def getEnvironment(self):
return self._env

~ -
Lecture 30: Laziness 5 iy Computer Science |

Evaluating Lambda Expressions

def evalLambda(expr,env):
assert isL,ambda(expr)
if len(expr) != 3:
evalError ("Bad lambda expression: %s" % str(expr))
return Procedure(expr[1], expr[2], env)

~ -
Lecture 30: Laziness 6 iy Computer Science |

Evaluating Applications

def meval(expr, env):

elif isApplication(expr):
return evalApplication(expr, env)

Lecture 30: Laziness 7

evalApplication

def evalApplication(expr, env):
To evaluate an application, evaluate all the subexpressions
subexprvals = map (lambda sexpr: meval(sexpr, env), expr)
then, apply the value of the first subexpression to the rest
return mapply(subexprvals[0], subexprvals[1:])

= -
filii Computer Science |

= :
Lecture 30: Laziness 8 iy Computer Science |

mapply
def mapply(proc, operands):
if (isPrimitiveProcedure(proc)):
return proc(operands)
elif isinstance(proc, Procedure):
params = proc.getParams()
newenv =|

for i in range(0, len(params)):

return| |

- :
Lecture 30: Laziness 9 Hiilli§ Computg\rug clence

Implemented Interpreter!

What's missing?

meval

Special forms:
if, begin, set!

Primitive procedures: ‘
lots and lots

Built-in types:
floating point numbers,
strings, lists, etc.

Lecture 30: Laziness 10

— -
i Computer Science |

“Surprise” Quiz

Lazy Evaluation

¢ Don't evaluate expressions until their value
is really needed
— We might save work this way, since sometimes
we don't need the value of an expression
— We might change the meaning of some
expressions, since the order of evaluation
matters
* Not a wise policy for problem sets (all
answer values will always be needed!)

= -
1 fi Computer Science |

= :
Lecture 30: Laziness 12 iy Computer Science |

Lazy Examples

Charme> ((lambda (x) 3) (* 2 2))

3

LazyCharme> ((lambda (x) 3) (* 2 2))
3

(Assumes extensions

Charme>((lambda (x) 3) (car 3)) from pon)

error: car expects a pair, applied to 3
LazyCharme> ((lambda (x) 3) (car 3))

3

Charme> ((lambda (x) 3) (loop-forever))

no value - loops forever

LazyCharme> ((lambda (x) 3) (loop-forever))
3

Laziness can be useful!

Lecture 30: Laziness 13

Ordinary men and women, having the opportunity of a happy
life, will become more kindly and less persecuting and less
inclined to view others with suspicion. The taste for war will die
out, partly for this reason, and partly because it will involve long
and severe work for all. Good nature is, of all moral qualities,
the one that the world needs most, and good nature is the
result of ease and security, not of a life of arduous struggle.
Modern methods of production have given us the possibility of
ease and security for all; we have chosen, instead, to have
overwork for some and starvation for others. Hitherto we have
continued to be as energetic as we were before there were
machines; in this we have been foolish, but there is no reason
to go on being foolish forever.

Bertrand Russell, /n Praise of Idleness, 1932
(co-author of Principia Mathematica,
proved wrong by Godel’s proof)

— -
filii Computer Science |

. &= C Sci
Lecture 30: Laziness 14 Hilii -omputer Science

How do we make our
evaluation rules lazier?

Evaluation Rule 3: Application.
To evaluate an application,
a. evaluate all the subexpressions

b. apply the value of the first subexpression to
the values of the other subexpressions.

a. evaluate the first subexpression, and delay evaluating
the operand subexpressions until their values are needed.

Lecture 30: Laziness 15

Evaluation of Arguments

» Applicative Order (“eager evaluation”)
— Evaluate all subexpressions before apply
— Scheme, original Charme, Java
¢ Normal Order (“lazy evaluation™)
— Evaluate arguments when the value is needed
— Algol60 (sort of), Haskell, Miranda, LazyCharme

“Normal” Scheme order is not “Normal Order”!

— -
il Computer Science |

- -
Lecture 30: Laziness 16 HiililE Compg;&ru §c‘\1e&kc Eu

Delaying Evaluation

* Need to record everything we will need to
evaluate the expression later

» After evaluating the expression, record the
result for reuse

Lecture 30: Laziness 17

I Thunk I Can

class Thunk:
def __init__(self, expr, env):
self._expr = expr
self._env = env
self._evaluated = False
def value(self):
if not self._evaluated:
self._value = forceeval(self._expr, self._env)
self._evaluated = True
return self._value

= -
filui Computer Science |

= -
Lecture 30: Laziness 18 fil Computer Science |

Lazy Application

def evalApplication(expr, env):
subexprvals = map (lambda sexpr: meval(sexpr, env), expr)
return mapply(subexprvals[0], subexprvals[1:])

U

def evalApplication(expr, env):
make Thunk object for each operand expression
ops = map (lambda sexpr: Thunk(sexpr, env), expr[1:])
return mapply(forceeval(expr[0], env), ops)

Forcing Evaluation

class Thunk:
def __init__(self, expr, env):
self._expr = expr
self._env = env
self._evaluated = False
def value(self):
if not self._evaluated:
self._value = forceeval(self._expr, self._env)
self._evaluated = True
return self._value def forceeval(expr, env):
value = meval(expr, env)
if isinstance(value, Thunk):
return value.value()
else:

return value

Lecture 30: Laziness 19 Hilii -omputer Science

Lecture 30: Laziness 20 Hilii -omputer Science

What else needs to change?

Hint: where do we need rea/values, instead of Thunks?

7~ -
Lecture 30: Laziness 21 iiiig Computer Science |

Primitive Procedures

¢ Option 1: redefine primitives to work on
thunks

« Option 2: assume primitives need values
of all their arguments

7~ -
Lecture 30: Laziness 2 iiiig Computer Science |

Primitive Procedures

def deThunk(expr):
if isThunk(expr):
return expr.value()
else:
return expr

def mapply(proc, operands):
if (isPrimitiveProcedure(proc)):
operands = map (lambda op: deThunk(op), operands)
return proc(operands)

Conditionals

We need to know the actual value of the predicate
expression, to know how to evaluate the rest of the
conditional.

elif ...
We need the deThunk procedure because Python’s
lambda construct can only have an expression as
its body (not an if statement)
Lecture 30: Laziness 23 i ComP},’fﬁ\"msbﬁi?&ﬁ%\

Lecture 30: Laziness 24 Hilii -omputer Science

def evalConditional(expr, env):

for clause in expr[1:]:

predicate = clause[0]
[result = meval(predicate, env) |

if not result =j=|False:
return mevl(clause[1], env)

N

result = forceeval(predicate, env)

Lecture 30: Laziness 25

Charge

¢ Don't let Lazy Scheme happen to you!
—PS7 is long and hard — don't wait to start it!

¢ Chapter 13: describes LazyCharme

¢ Wednesday:

— Delayed lists in LazyCharme (if you want to
seem really smart in class, read Chapter 13
before Wednesday!)

» Wednesday, Friday: Type Checking

= -
m; T '1€1¢
fi Computer Science |

; = C Sci
Lecture 30: Laziness 26 B -omputerocience)

