
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 31: Lecture 31:

Types of TypesTypes of Types

2Lecture 31: Truthiness

Menu

• Using Laziness

• Evidence of Laziness? (Quiz Results)

• Laziness through Truthiness (Static Type
Checking)

3Lecture 31: Truthiness

Lazy Evaluation Recap

• Don’t evaluate expressions until their value
is really needed
– We might save work this way, since sometimes
we don’t need the value of an expression

– We might change the meaning of some
expressions, since the order of evaluation
matters

• Change the Evaluation rule for Application

• Use thunks to delay evaluations

4Lecture 31: Truthiness

Lazy Application

def evalApplication(expr, env):
make Thunk object for each operand expression
ops = map (lambda sexpr: Thunk(sexpr, env), expr[1:])
return mapply(forceeval(expr[0], env), ops)

def evalApplication(expr, env):
subexprvals = map (lambda sexpr: meval(sexpr, env), expr)
return mapply(subexprvals[0], subexprvals[1:])

5Lecture 31: Truthiness

Lazy Data Structures

(define cons
(lambda (a b)

(lambda (p)
(if p a b))))

(define car
(lambda (p) (p #t)))

(define cdr
(lambda (p) (p #f)))

Note: for PS7, you
are defining these
as primitives,
which would not
evaluate lazily.

6Lecture 31: Truthiness

Using Lazy Pairs

(define cons
(lambda (a b)

(lambda (p)
(if p a b))))

LazyCharme> (define pair (cons 3 error))
LazyCharme> pair
<Procedure ['p'] / ['if', 'p', 'a', 'b']>
LazyCharme> (car pair)
3
LazyCharme> (cdr pair)
Error: Undefined name: error

(define car
(lambda (p) (p #t)))

(define cdr
(lambda (p) (p #f)))

2

7Lecture 31: Truthiness

Infinite Lists

(define ints-from
(lambda (n)

(cons n (ints-from (+ n 1)))))

LazyCharme> (define allnaturals (ints-from 0))
LazyCharme> (car allnaturals)
0
LazyCharme> (car (cdr allnaturals))
1
LazyCharme> (car (cdr (cdr (cdr (cdr allnaturals)))))
4

8Lecture 31: Truthiness

Infinite Fibonacci Sequence
(define fibo-gen (lambda (a b)

(cons a (fibo-gen b (+ a b)))))

(define fibos (fibo-gen 0 1))

(define get-nth (lambda (lst n)
(if (= n 0) (car lst)

(get-nth (cdr lst) (- n 1)))))

(define fibo
(lambda (n) (get-nth fibos n)))

9Lecture 31: Truthiness

Alternate Implementation

(define merge-lists
(lambda (lst1 lst2 proc)

(if (null? lst1) null
(if (null? lst2) null

(cons (proc (car lst1) (car lst2))
(merge-lists (cdr lst1) (cdr lst2) proc))))))

(define fiboms
(cons 0

(cons 1
(merge-lists fiboms (cdr fiboms) +))))

10Lecture 31: Truthiness

Quiz Results

11Lecture 31: Truthiness

Quiz Answers
1. Programming languages designed by John

Backus: Fortran, FP, FL

(BNF – not a programming language)

2. What did Gödel prove?

That any axiomatic system powerful
enough to express “This statement
cannot be proven in the system” must
be incomplete.

3. What does SSS0 mean? 3

12Lecture 31: Truthiness

class Environment:
def __init__(self, parent):

self._parent = parent
self._frame = { }
def addVariable(self, name, value):

self._frame[name] = value
def lookupVariable(self, name):
if self._frame.has_key(name):
return self._frame[name]

elif self._parent:

return self._parent.lookupVariable(name)

else:
evalError("Undefined name: %s" % (name))

elif self._parent._frame.has_key(name)

self._parent._frame[name]

Quiz 4: Environment Class

3

13Lecture 31: Truthiness

Quiz 5: Viruses

• Is it possible to define a procedure that
protects computer users from all viruses?

Here’s one procedure:
o Unplug the computer from the power
o Encase it in concrete
o Throw it in the Potomac River

This is a very different question from the “Is it possible to
determine if a procedure specification is a virus?” question
(which we proved in class is impossible by showing how a
solution to it could be used to solve the Halting Problem.

14Lecture 31: Truthiness

Types

15Lecture 31: Truthiness

Types
Numbers Strings

Beatle’s Songs that don’t end on the Tonic

Colors

lists of lists of lists of anything

programs that halt

• Type is a (possibly infinite) set of values

• You can do some things with some types,
but not others

16Lecture 31: Truthiness

Why have types?
• Detecting programming errors: (usually)
better to notice error than report incorrect
result

• Make programs easier to read, understand
and maintain: thinking about types can help
understand code

• Verification: types make it easier to prove
properties about programs

• Security: can use types to constrain the
behavior of programs

17Lecture 31: Truthiness

Types of Types

Does regular Scheme have types?

> (car 3)
car: expects argument of type <pair>; given 3
> (+ (cons 1 2))
+: expects argument of type <number>; given (1 . 2)

Yes, without types (car 3) would produce some silly result.
Because of types, it produces a type error.

18Lecture 31: Truthiness

Type Taxonomy

• Latent vs. Manifest
– Are types visible in the program text?

• Static vs. dynamic checking
– Do you have to run the program to know if
it has type errors?

• Weak vs. Strong checking
– How strict are the rules for using types?

• (e.g., does the predicate for an if need to be a
Boolean?)

– Continuum (just matter of degree)

4

19Lecture 31: Truthiness

Scheme/Python/Charme

• Latent or Manifest?

– All have latent types (none visible in code)

• Static or Dynamic?

– All are dynamic (checked when expression is
evaluated)

• Weak or Strong?

– Which is the strictest?

20Lecture 31: Truthiness

Strict Typing

Scheme> (+ 1 #t)

+: expects type <number> as 2nd argument,
given: #t; other arguments were: 1

Python>>> 1 + True

2

Charme> (+ 1 #t)

2

21Lecture 31: Truthiness

Scheme/Python/Charme
→ Java/StaticCharme

• Scheme, Python, and Charme have Latent,
Dynamically checked types

– Don’t see explicit types when you look at code

– Checked when an expression is evaluated

• Java, StaticCharme have Manifest, Statically
checked types

– Type declarations must be included in code

– Types are checked statically before running the
program (Java: not all types checked statically)

22Lecture 31: Truthiness

Java Example

class Test {
int tester (String s)
{

int x;
x = s;
return "okay";

}
}

The result

is an integer

The place x

holds an integer

> javac types.java

types.java:5: Incompatible

type for =. Can't convert
java.lang.String to int.

x = s;

^
types.java:6: Incompatible

type for return. Can't convert
java.lang.String to int.

return "okay";

^
2 errors

The parameter
must be a String

javac compiles (and type checks)

the program. It does not execute it.

23Lecture 31: Truthiness

What do we need to do change
our Charme interpreter to
provide manifest types?

24Lecture 31: Truthiness

Charge

• PS7 Due Friday

• Friday: Finish StaticCharme interpreter

• Monday: Project ideas and team requests
for PS9

