
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 4:
The Value of
Everything

2Lecture 4: Value of Everything

Menu

• Problem Set 1

• Evaluation Rules

Return Problem Set 1 at end of class today

3Lecture 4: Value of Everything

Question 2

• Without Evaluation Rules, Question 2 was
“guesswork”

• Once you know the Evaluation Rules, you
can answer Question 2 without any
guessing!

4Lecture 4: Value of Everything

2d
(100 + 100)

Evaluation Rule 3. Application.

a. Evaluate all the subexpressions

100 <primitive:+> 100

b. Apply the value of the first
subexpression to the values of all the
other subexpressions

Error: 100 is not a procedure, we

only have apply rules for procedures!

5Lecture 4: Value of Everything

2h

(if (not "cookies") "eat" "starve")

Evaluation Rule 5: If. To evaluate an if
expression:

(a) Evaluate ExpressionPredicate.
(b) If it evaluates to #f, the value of the if
expression is the value of ExpressionAlternate.
Otherwise, the value of the if expression is
the value of ExpressionConsequent.

6Lecture 4: Value of Everything

Evaluate (not "cookies")
Evaluation Rule 3. Application.

a. Evaluate all the subexpressions
<primitive:not> “cookies”

The quotes really matter here!
Without them what would cookies evaluate to?

b. Apply the value of the first subexpression to
the values of all the other subexpressions

Application Rule 1: To apply a primitive, just do it.

How do we evaluate an application of a
primitive if we don’t know its pre-defined
meaning?

2

7Lecture 4: Value of Everything

Defining not

library procedure: (not obj)

not returns #t if obj is false, and returns
#f otherwise.

(define (not v) (if v #f #t)

8Lecture 4: Value of Everything

2h
(if (not "cookies") "eat" "starve")

Evaluate (not "cookies") => #f

So, value of if is value of Expression2

=> “starve”

9Lecture 4: Value of Everything

brighter?

(define brighter? (lambda (color1
color2) (if (> (+ (get-red color1)
(get-green color1) (get-blue color1)
) (+ (get-red color2) (get-green
color2) (get-blue color2)) #t
#f)))

Is this correct?
Maybe...but very hard to tell.
Your code should appear in a
way that reveals its structure

10Lecture 4: Value of Everything

(define brighter?
(lambda (color1 color2)

(if (> (+ (get-red color1)
(get-green color1)
(get-blue color1))

(+ (get-red color2)
(get-green color2)

(get-blue color2))
#t #f)))

Use [Tab] in DrScheme to line up your code structurally!

11Lecture 4: Value of Everything

Iffy Proposition

(if Expression #t #f) == Expression

Is this always true?

(if “cookies” #t #f)

12Lecture 4: Value of Everything

Brighter brighter??

(define brighter?

(lambda (color1 color2)

(> (+ (get-red color1)

(get-green color1)

(get-blue color1))

(+ (get-red color2)

(get-green color2)

(get-blue color2)))))

3

13Lecture 4: Value of Everything

Brighter brighter??

(define brightness

(lambda (color)

(+ (get-red color)

(get-green color)

(get-blue color))))

(define brighter?

(lambda (color1 color2)

(> (brightness color1)

(brightness color2)))

14Lecture 4: Value of Everything

Believable brighter??

(make-color 255 255 0) (make-color 255 1 255)

15Lecture 4: Value of Everything

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT14/

Color Absorbed

16Lecture 4: Value of Everything

Cognitive Scientist’s Answer

(define brightness

(lambda (color)

(+ (* 0.299 (get-red color))

(* 0.587 (get-green color))

(* 0.114 (get-blue color)))))

(define brighter?

(lambda (color1 color2)

(> (brightness color1)

(brightness color2)))

17Lecture 4: Value of Everything

(+ (abs (- (get-red color1) (get-red sample)))
(abs (- (get-blue color1) (get-blue sample)))

(abs (- (get-green color1) (get-green sample))))

(+ (abs (- (get-red color2) (get-red sample)))
(abs (- (get-blue color2) (get-blue sample)))
(abs (- (get-green color2) (get-green sample))))

(define (closer-color? sample color1 color2)

(<

))

closer-color? (Green Star version)

18Lecture 4: Value of Everything

(+ (abs (- (get-red color2) (get-red sample)))
(abs (- (get-blue color2) (get-blue sample)))
(abs (- (get-green color2) (get-green sample))))

(define (closer-color? sample color1 color2)

(<

))

(+ (abs (- (get-red color1) (get-red sample)))
(abs (- (get-blue color1) (get-blue sample)))
(abs (- (get-green color1) (get-green sample))))

4

19Lecture 4: Value of Everything

(+ (abs (- (get-red) (get-red)))

(abs (- (get-blue) (get-blue)))
(abs (- (get-green) (get-green))))

(+ (abs (- (get-red color2) (get-red sample)))
(abs (- (get-blue color2) (get-blue sample)))

(abs (- (get-green color2) (get-green sample))))

(define (closer-color? sample color1 color2)
(<

))

color1 sample
color1

color1
sample

sample

(lambda ()

20Lecture 4: Value of Everything

(+ (abs (- (get-red) (get-red)))

(abs (- (get-blue) (get-blue)))
(abs (- (get-green) (get-green))))

(+ (abs (- (get-red color2) (get-red sample)))
(abs (- (get-blue color2) (get-blue sample)))

(abs (- (get-green color2) (get-green sample))))

(define (closer-color? sample color1 color2)
(<

))

(color-difference color1 sample)

colora colorb
colora

colora
colorb

colorb

(lambda (colora colorb)

(define color-difference

))

(color-difference color2 sample)

21Lecture 4: Value of Everything

(define color-difference
(lambda (colora colorb)

(+(abs (- (get-red colora) (get-red colorb)))
(abs (- (get-green colora) (get-green colorb)))
(abs (- (get-blue colora) (get-blue colorb))))))

(define (closer-color? sample color1 color2)
(< (color-difference color1 sample)

(color-difference color2 sample)))

What if you want to use square instead of abs?

22Lecture 4: Value of Everything

(define color-difference

(lambda (cf)
(lambda (colora colorb)

(+ (cf (- (get-red colora) (get-red colorb)))

(cf (- (get-green colora) (get-green colorb)))
(cf (- (get-blue colora) (get-blue colorb)))))))

(define (closer-color? sample color1 color2)
(< (color-difference color1 sample)

(color-difference color2 sample)))

23Lecture 4: Value of Everything

(define color-difference
(lambda (cf)

(lambda (colora colorb)
(+ (cf (- (get-red colora) (get-red colorb))

(cf (- (get-green colora) (get-green colorb))

(cf (- (get-blue colora) (get-blue colorb))))))))

(define (closer-color? sample color1 color2)

(< ((color-difference square) color1 sample)
((color-difference square) color2 sample)))

24Lecture 4: Value of Everything

The Patented RGB RMS Method
/* This is a variation of RGB RMS error. The final square-root has been eliminated to */

/* speed up the process. We can do this because we only care about relative error. */

/* HSV RMS error or other matching systems could be used here, as long as the goal of */

/* finding source images that are visually similar to the portion of the target image */

/* under consideration is met. */

for(i = 0; i > size; i++) {

rt = (int) ((unsigned char)rmas[i] - (unsigned

char)image->r[i]);

gt = (int) ((unsigned char)gmas[i] - (unsigned char)

image->g[i];

bt = (int) ((unsigned char)bmas[i] - (unsigned

char)image->b[i];

result += (rt*rt+gt*gt+bt*bt);

}
Your code should never look like this! Use new lines and
indenting to make it easy to understand the structure of

your code! (Note: unless you are writing a patent. Then the

goal is to make it as hard to understand as possible.)

5

25Lecture 4: Value of Everything

The Patented RGB RMS Method

rt = rmas[i] - image->r[i];

gt = gmas[i] - image->g[i];

bt = bmas[i] - image->b[i];

result += (rt*rt + gt*gt + bt*bt);

Patent requirements:
1.new – must not be previously available

(ancient Babylonians made mosaics)
2.useful
3.nonobvious

~1/4 of you came up with this method!

(most of rest used abs instead, which works as well)

26Lecture 4: Value of Everything

CS150 PS Grading Scale

�Gold Star – Excellent Work. (No Gold Stars on
PS1)

�Green Star – You got everything I wanted.

�Blue Star – Good Work. You got most
things on this PS, but some answers could
be better.

�Silver Star – Some problems. Make sure
you understand the solutions on today’s
slides.

PS1 Average: ����

27Lecture 4: Value of Everything

No upper limit
�� - Double Gold Star: exceptional work!

Better than I expected anyone would do.

���- Triple Gold Star: Better than I thought

possible (moviemosaic for PS1)

����- Quadruple Gold Star: You have

broken important new ground in CS which
should be published in a major journal!

�����- Quintuple Gold Star: You deserve to

win a Turing Award! (a fast, general way to
make the best non-repeating photomosaic on
PS1, or a proof that it is impossible)

28Lecture 4: Value of Everything

What should you do if you can’t
get your code to work?

• Keep trying – think of alternate
approaches

• Get help from the ACs and your
classmates

• But, if its too late for that...

– In your submission, explain what
doesn’t work and as much as you can
what you think is right and wrong

Evaluation Rules

30Lecture 4: Value of Everything

Primitive Expressions

Expression ::= PrimitiveExpression

PrimitiveExpression ::= Number

PrimitiveExpression ::= #t | #f

PrimitiveExpression ::= Primitive Procedure

Evaluation Rule 1: Primitive. If the
expression is a primitive, it evaluates to its
pre-defined value.

> +
#<primitive:+>

6

31Lecture 4: Value of Everything

Name Expressions

Expression ::= NameExpression

NameExpression ::= Name

Evaluation Rule 2: Name. If the expression
is a name, it evaluates to the value associated
with that name.

> (define two 2)
> two
2

32Lecture 4: Value of Everything

Definitions

Definition ::= (define Name Expression)

Definition Rule. A definition evaluates the
Expression, and associates the value of
Expression with Name.

> (define dumb (+ + +))
+: expects type <number> as 1st argument, given: #<primitive:+>;

other arguments were: #<primitive:+>

> dumb
reference to undefined identifier: dumb

33Lecture 4: Value of Everything

Evaluation Rule 5: If
Expression ::= (if ExpressionPredicate

ExpressionConsequent

ExpressionAlternate)

Evaluation Rule 5: If. To evaluate an if
expression:
a. Evaluate the predicate expressions.
b. If it evaluates to #f, the value of the if
expression is the value of alternate expression.
Otherwise, the value of the if expression is the
value of consequent expression.

34Lecture 4: Value of Everything

Application Expressions

Expression ::= ApplicationExpression

ApplicationExpression ::= (Expression MoreExpressions)

MoreExpressions ::= ε | Expression MoreExpressions

Evaluation Rule 3: Application. To
evaluate an application expression:

a. Evaluate all the subexpressions;

b. Then, apply the value of the first

subexpression to the values of the

remaining subexpressions.

35Lecture 4: Value of Everything

Rules for Application

1. Primitive. If the procedure to apply is a
primitive, just do it.

2. Constructed Procedure. If the
procedure is a constructed procedure,
evaluate the body of the procedure
with each formal parameter replaced by
the corresponding actual argument
expression value.

36Lecture 4: Value of Everything

Constructing Procedures: Lambda

Expression ::= ProcedureExpression

ProcedureExpression

::= (lambda (Parameters) Expression)

Parameters ::= ε | Name Parameters

Evaluation Rule 4: Lambda. Lambda
expressions evaluate to a procedure that takes
the given Parameters as inputs and has the
Expression as its body.

7

37Lecture 4: Value of Everything

Applying Constructed Procedures

Application Rule 2: Constructed
Procedure. If the procedure is a
constructed procedure, evaluate the
body of the procedure with each formal
parameter replaced by the
corresponding actual argument
expression value.

38Lecture 4: Value of Everything

Applying Constructed Procedures

Application Rule 2: Constructed Procedure. If the
procedure is a constructed procedure, evaluate the
body of the procedure with each formal parameter
replaced by the corresponding actual argument
expression value.

> ((lambda (n) (+ n 1)) 2)

((lambda (n) (+ n 1)) 2)
Evaluation Rule 3a: evaluate the subexpressions

Evaluation Rule 3b, Application Rule 2

(+ 2 1)
Evaluation Rule 3a, 3b, Application Rule 1

3

39Lecture 4: Value of Everything

Lambda Example: Tautology Function

(lambda
()
#t)

> ((lambda () #t) 150)
#<procedure>: expects no arguments, given 1: 150
> ((lambda () #t))
#t
> ((lambda (x) x) 150)
150

make a procedure
with no parameters
with body #t

40Lecture 4: Value of Everything

EvalEval

ApplyApply

Eval and Apply
are defined in
terms of each
other.

Without Eval,
there would be
no Apply,
Without Apply
there would be
no Eval!

41Lecture 4: Value of Everything

Now You Know All of Scheme!

• Once you understand Eval and Apply,
you can understand all Scheme programs!

• Except:
– There are many primitives, need to know their
predefined meaning

– There are a few more special forms (like if)

– We have not define the evaluation rules
precisely enough to unambiguously
understand all programs (e.g., what does
“value associated with a name” mean?)

42Lecture 4: Value of Everything

Charge

• (In theory) You now know everything you
need for PS2, PS3 and PS4

• Friday: Programming with Data

• Next week - lots of examples of:

– Programming with procedures, data

– Recursive definitions

• But, if you understand the Scheme
evaluation rules, you know it all already!

