
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 40: Lecture 40:

Computing Computing

with Glue and with Glue and

PhotonsPhotons

The Tinkertoy Computer and Other Machinations
by A. K. Dewdney http://www.amazon.com/exec/obidos/tg/detail/-/071672491X/103-4408705-5367831?v=glance

2Lecture 40: Computing with Glue and Photons

Equivalent Computers?

z z zz z z z

1

Start

HALT

), X, L

2: look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

...

Turing Machine

≡

term = variable

| term term

| (term)

| λλλλ variable

. term

λy. M ⇒α λv. (M [y v])

where v does not occur in M.

(λx. M)N ⇒ β M [x N]α

α

Lambda Calculus

3Lecture 40: Computing with Glue and Photons

Lambda Calculus is a Universal Computer?

z z z z z z z z z z z z z z z zz z z z

1

Start

HALT

), X, L

2: look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

• Read/Write Infinite Tape
Mutable Lists

• Finite State Machine
Numbers

• Processing
Way to make decisions (if)
Way to keep going

4Lecture 40: Computing with Glue and Photons

What is 42?

42
forty-two

XLII

cuarenta y dos

5Lecture 40: Computing with Glue and Photons

Meaning of Numbers

• “42-ness” is something who’s
successor is “43-ness”

• “42-ness” is something who’s
predecessor is “41-ness”

• “Zero” is special. It has a successor
“one-ness”, but no predecessor.

6Lecture 40: Computing with Glue and Photons

Meaning of Numbers

pred (succ N) → N

succ (pred N) → N

succ (pred (succ N)) → succ N

zero? zero → T

zero? (succ zero) → F

2

7Lecture 40: Computing with Glue and Photons

Is this enough?

Can we define add with pred, succ,
zero? and zero?

add ≡ λxy.if (zero? x) y

(add (pred x) (succ y))

8Lecture 40: Computing with Glue and Photons

Can we define lambda terms
that behave like
zero, zero?, pred and succ?

Hint: what if we had cons, car and cdr?

9Lecture 40: Computing with Glue and Photons

Numbers are Lists...

zero? ≡ null?

pred ≡ cdr

succ ≡ λ x . cons F x

The length of the list corresponds to the number value.

10Lecture 40: Computing with Glue and Photons

Making Pairs

(define (make-pair x y)
(lambda (selector) (if selector x y)))

(define (car-of-pair p) (p #t))
(define (cdr-of-pair p) (p #f))

11Lecture 40: Computing with Glue and Photons

cons and car
cons ≡ λx.λy.λz.zxy

cons M N = (λx.λy.λz.zxy) M N

→ β (λy.λz.zMy) N

→ β λz.zMN

car ≡ λp.p T

car (cons M N) ≡ car (λz.zMN) ≡ (λp.p T) (λz.zMN)

→ β (λz.zMN) T → β TMN

→ β (λxy. x) MN

→ β (λy. M)N

→ β M

T ≡ λxy. x

12Lecture 40: Computing with Glue and Photons

cdr too!
cons ≡ λxyz.zxy

car ≡ λp.p T

cdr ≡ λp.p F

cdr cons M N

cdr λz.zMN = (λp.p F) λz.zMN

→ β (λz.zMN) F

→ β FMN

→ β N

3

13Lecture 40: Computing with Glue and Photons

Null and null?

null ≡ λx.T

null? ≡ λx.(x λy.λz.F)

null? null → λx.(x λy.λz.F) (λx. T)

→ β (λx. T)(λy.λz.F)

→ β T

14Lecture 40: Computing with Glue and Photons

Null and null?

null ≡ λx.T

null? ≡ λx.(x λy.λz.F)

null? (cons M N) → λx.(x λy.λz.F) λz.zMN

→ β (λz.z MN)(λy.λz.F)

→ β (λy.λz.F) MN

→ β F

15Lecture 40: Computing with Glue and Photons

Counting

0 ≡ null

1 ≡ cons F 0

2 ≡ cons F 1

3 ≡ cons F 2

...

succ ≡ λx.cons F x

pred ≡ λx.cdr x

16Lecture 40: Computing with Glue and Photons

42 = λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λx.T

17Lecture 40: Computing with Glue and Photons

Lambda Calculus is a Universal Computer

z z z z z z z z z z z z z z z zz z z z

1

Start

HALT

), X, L

2: look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

• Read/Write Infinite Tape
� Mutable Lists
• Finite State Machine
� Numbers to keep track of state
• Processing
� Way of making decisions (if)
☯ Way to keep going

We have this, but

we cheated using ≡
to make recursive

definitions!

18Lecture 40: Computing with Glue and Photons

Way to Keep Going

(λ f. ((λ x.f (xx)) (λ x. f (xx)))) (λz.z)

→β (λx.(λz.z)(xx)) (λ x. (λz.z)(xx))

→β (λz.z) (λ x.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λx.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λz.z) (λ x.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β (λx.(λz.z)(xx)) (λ x.(λz.z)(xx))

→β ...

This should give you some belief that we

might be able to do it. We won’t cover
the details of why this works in this class.

4

19Lecture 40: Computing with Glue and Photons

Lambda Calculus is a Universal Computer

z z z z z z z z z z z z z z z zz z z z

1

Start

HALT

), X, L

2: look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

• Read/Write Infinite Tape
� Mutable Lists
• Finite State Machine
� Numbers to keep track of state
• Processing
� Way of making decisions (if)
� Way to keep going

20Lecture 40: Computing with Glue and Photons

Equivalent Computers!

z z zz z z z

1

Start

HALT

), X, L

2: look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

...

Turing Machine

term = variable

| term term

| (term)

| λλλλ variable . term

λy. M ⇒α λv. (M [y v])

where v does not occur in M.

(λx. M)N ⇒ β M [x N]α

α

Lambda Calculus

can simulate

can simulate

21Lecture 40: Computing with Glue and Photons

Universal Computer

• Lambda Calculus can simulate a Turing
Machine

– Everything a Turing Machine can compute,
Lambda Calculus can compute also

• Turing Machine can simulate Lambda
Calculus (we didn’t prove this)

– Everything Lambda Calculus can compute, a
Turing Machine can compute also

• Church-Turing Thesis: this is true for any
other mechanical computer also

22Lecture 40: Computing with Glue and Photons

Normal Steps
• Turing machine:

– Read one square on tape, follow one FSM
transition rule, write one square on tape,
move tape head one square

• Lambda calculus:

– One beta reduction

• Your PC:

– Execute one instruction (?)

• What one instruction does varies

23Lecture 40: Computing with Glue and Photons

Generalized Normal Steps

• Require a constant amount of time

• Perform a fixed amount of work

– Read/write a constant amount of stuff

– Make a constant number of decisions

– Localized

– Cannot scale (indefinitely) with input size

24Lecture 40: Computing with Glue and Photons

What about “non-mechanical”
computers?

5

25Lecture 40: Computing with Glue and Photons

Quantum Physics
for Dummies

• Light behaves like both a wave and a
particle at the same time

• A single photon is in many states at
once

• Can’t observe its state without
forcing it into one state

• Schrödinger’s Cat
– Put a live cat in a box with cyanide vial
that opens depending on quantum state

– Cat is both dead and alive at the same
time until you open the box

26Lecture 40: Computing with Glue and Photons

Quantum Computing
• Feynman, 1982

• Quantum particles are in all possible states

• Can try lots of possible computations at once
with the same particles

• In theory, can test all possible
factorizations/keys/paths/etc. and get the
right one!

• In practice, very hard to keep states
entangled: once disturbed, must be in just
one possible state

27Lecture 40: Computing with Glue and Photons

Qubit

• Regular bit: either a 0 or a 1

• Quantum bit: 0, 1 or in between

– p% probability it is a 1

• A single qubit is in 2 possible states at once

• If you have 7 bits, you can represent any
one of 27 different states

• If you have 7 qubits, you have 27 different
states (at once!)

28Lecture 40: Computing with Glue and Photons

Quantum Computers Today

• Several quantum algorithms

– Shor’s algorithm: factoring using a quantum computer

• Actual quantum computers

– 5-qubit computer built by IBM (2001)

– Implemented Shor’s algorithm to factor:

• “World’s most complex quantum computation”

– D-Wave 16-qubit quantum computer (2007)

• Solves Sudoku puzzles

• To exceed practical normal computing need > 50
qubits

– Adding another qubit is more than twice as hard

15 (= 5 * 3)

29Lecture 40: Computing with Glue and Photons

Nondeterministic Computing

1

Start

2

Input: 1

Write: 1

Move: →

1 1 1 1 1 1 1... ...1 1 1 1 1 1 1 1

3
Input: #

Write: #

Move: →

Input: 1

Write: 1

Move: →

There can be multiple
transitions on the same
input. NTM takes all of
them at once. Each
gets its own
independent copy of
the tape. If any path
finds halting state, that
is the result.

30Lecture 40: Computing with Glue and Photons

Two Ways of Thinking about
Nondeterminstic Computing

• Omniscient (all-knowing): machine always
guesses right (the right guess is the one
that eventually leads to a halting state)

• Omnipotent (all-powerful): machine can
split in two every step, all resulting
machines execute on each step, if one of
the machines halts its tape is the output

6

31Lecture 40: Computing with Glue and Photons

Computability

Is a nondeterministic TM more
powerful than a deterministic TM?

No! We can simulate a nondeterminstic
TM with a regular TM.

32Lecture 40: Computing with Glue and Photons

Efficiency

Is a nondeterministic TM faster
than a deterministic TM?

Unknown! This is the most famous
open problem in CS.

33Lecture 40: Computing with Glue and Photons

Charge

• Friday’s class: P versus NP (the
nondeterministic TM question)

• Qualification for Monday’s presentations

– Send me a URL for your site before 11:59pm
Friday

– Basic functionality should be working

– You can keep developing after this (if
something breaks, you won’t be disqualified,
but be smart and keep a copy of what works!)

