

Meaning of Numbers

- "42-ness" is something who's successor is " 43 -ness"
- "42-ness" is something who's predecessor is "41-ness"
- "Zero" is special. It has a successor "one-ness", but no predecessor.

Meaning of Numbers

pred $($ succ $N) \rightarrow N$
$\operatorname{succ}(\operatorname{pred} N) \rightarrow N$
$\operatorname{succ}(\operatorname{pred}(\operatorname{succ} N)) \rightarrow \operatorname{succ} N$
zero? zero $\rightarrow \mathbf{T}$
zero? (succ zero) $\rightarrow \mathbf{F}$

Lecture 40: Computing with Glue and Photons
6
Computer Science

Can we define lambda terms that behave like zero, zero?, pred and succ?

Hint: what if we had cons, car and cdr?

| Lecture 40: Computing with Glue and Photons Computer Science |
| :--- | :--- | :--- |

Numbers are Lists...

zero? \equiv null?
pred $\equiv \mathbf{c d r}$
$\boldsymbol{s u c c} \equiv \lambda x$. cons $\mathbf{F} x$

The length of the list corresponds to the number value.

Lecture 40: Computing with Glue and Photons	9	Computer Science

$$
\begin{aligned}
& \text { cons and car } \\
& \text { cons } \equiv \lambda x . \lambda y . \lambda z . z x y \\
& \text { cons } \mathrm{M} \mathrm{~N}=(\lambda x \cdot \lambda y \cdot \lambda z \cdot z x y) \mathrm{M} \mathrm{~N} \\
& \rightarrow_{\beta}(\lambda y \cdot \lambda z . z \mathrm{M} y) \mathrm{N} \\
& \rightarrow{ }_{\beta} \lambda z . z \mathrm{MN} \\
& \mathrm{car} \equiv \lambda p . p \mathbf{T} \quad \mathbf{T} \equiv \lambda x y \cdot x \\
& \operatorname{car}(\text { cons } \mathrm{M} \mathrm{~N}) \equiv \operatorname{car}(\lambda z z \mathrm{MN}) \equiv(\lambda p . p \mathbf{T})(\lambda z z \mathrm{MN}) \\
& \rightarrow_{\beta}(\lambda z z \mathrm{MN}) \mathbf{T} \rightarrow{ }_{\beta} \mathbf{T M N} \\
& \rightarrow_{\beta}(\lambda x y . x) \mathrm{MN} \\
& \rightarrow_{\beta}(\lambda y . M) N \\
& \rightarrow_{\beta} \mathrm{M}
\end{aligned}
$$

Making Pairs
(define (make-pair x y)
(lambda (selector) (if selector x y)))
(define (car-of-pair p) (p \#t))
(define (cdr-of-pair p) (p \#f))

```
                cdr too!
    cons \(\equiv \lambda x y z . z x y\)
    car \(\equiv \lambda p . p \mathrm{~T}\)
    \(\mathrm{cdr} \equiv \lambda p . p \mathrm{~F}\)
    cdr cons \(M N\)
    \(\operatorname{cdr} \lambda z . z \mathrm{MN}=(\lambda p . p \mathrm{~F}) \lambda z . z \mathrm{MN}\)
        \(\rightarrow{ }_{\beta}(\lambda z . z \mathrm{MN}) \mathrm{F}\)
        \(\rightarrow{ }_{\beta} \mathrm{FMN}\)
        \(\rightarrow{ }_{\beta} \mathrm{N}\)



\section*{Counting}
\(\mathbf{0} \equiv\) null
\(1 \equiv\) cons F 0
\(2 \equiv\) cons \(\mathbf{F} 1\)
\(3 \equiv\) cons F 2
succ \(\equiv \lambda x\). cons \(\mathbf{F} x\)
\(\operatorname{pred} \equiv \lambda x . \operatorname{cdr} x\)
Lecture 40: Computing with Glue and Photons 15 Computer Science
\(42=\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\)
\(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z z z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z z z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x y .(\lambda z . z x y) \lambda x y . y\) \(\lambda x y .(\lambda z . z x y) \lambda x y . y \lambda x . \mathrm{T}\)
Lecture 40: Computing with Glue and Photons 16 Computer Science


\section*{Way to Keep Going}
\[
\begin{aligned}
&(\lambda f .((\lambda x . f(x x))(\lambda x . f(x x))))(\lambda z . z) \\
& \rightarrow_{\beta}(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x)) \\
& \rightarrow_{\beta}(\lambda z . z)(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x)) \\
& \rightarrow_{\beta}(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x)) \\
& \rightarrow_{\beta}(\lambda z . z)(\lambda x .(\lambda z . z)(x x))(\lambda x .(\lambda z . z)(x x)) \\
& \rightarrow_{\beta}\left(\lambda x .(\lambda z . z)\left(\begin{array}{l}
\text { This should give you some belief that we } \\
\text { might be able to do oti. We won' cover } \\
\text { the details of why this works in this class. }
\end{array}\right.\right. \\
& \rightarrow_{\beta} \cdots
\end{aligned}
\]


\section*{Universal Computer}
- Lambda Calculus can simulate a Turing Machine
- Everything a Turing Machine can compute, Lambda Calculus can compute also
- Turing Machine can simulate Lambda Calculus (we didn't prove this)
- Everything Lambda Calculus can compute, a Turing Machine can compute also
- Church-Turing Thesis: this is true for any other mechanical computer also

\section*{Generalized Normal Steps}
- Require a constant amount of time
- Perform a fixed amount of work
- Read/write a constant amount of stuff
- Make a constant number of decisions
- Localized
- Cannot scale (indefinitely) with input size
\(\qquad\)

\section*{Normal Steps}
- Turing machine:
- Read one square on tape, follow one FSM transition rule, write one square on tape, move tape head one square
- Lambda calculus:
- One beta reduction
- Your PC:
- Execute one instruction (?)
- What one instruction does varies
\begin{tabular}{|lll}
\hline Lecture 40: Computing with Glue and Photons & 22 & Computer Science \\
\hline
\end{tabular}



\section*{Qubit}
- Regular bit: either a 0 or a 1
- Quantum bit: 0, 1 or in between
\(-\mathrm{p} \%\) probability it is a 1
- A single qubit is in 2 possible states at once
- If you have 7 bits, you can represent any one of \(2^{7}\) different states
- If you have 7 qubits, you have \(2^{7}\) different states (at once!)


\section*{Quantum Computing}
- Feynman, 1982
- Quantum particles are in all possible states
- Can try lots of possible computations at once with the same particles
- In theory, can test all possible factorizations/keys/paths/etc. and get the right one!
- In practice, very hard to keep states entangled: once disturbed, must be in just one possible state
Lecture 40: Computing with Glue and Photons 26

\section*{Quantum Computers Today}
- Several quantum algorithms
- Shor's algorithm: factoring using a quantum computer
- Actual quantum computers
- 5-qubit computer built by IBM (2001)
- Implemented Shor's algorithm to factor:
- "World's most complex quantum computation'15 (= 5 * 3)
- D-Wave 16-qubit quantum computer (2007)
- Solves Sudoku puzzles
- To exceed practical normal computing need \(>50\) qubits
- Adding another qubit is more than twice as hard

Lecture 40: Computing with Glue and Photons
28
Computer Science

\section*{Two Ways of Thinking about Nondeterminstic Computing}
- Omniscient (all-knowing): machine always guesses right (the right guess is the one that eventually leads to a halting state)
- Omnipotent (all-powerful): machine can split in two every step, all resulting machines execute on each step, if one of the machines halts its tape is the output


Is a nondeterministic TM more powerful than a deterministic TM?

No! We can simulate a nondeterminstic TM with a regular TM.

Lecture 40: Computing with Glue and Photons

Efficiency
Is a nondeterministic TM faster than a deterministic TM?

Unknown! This is the most famous open problem in CS.

Lecture 40: Computing with Glue and Photons
32

\section*{Charge}
- Friday's class: P versus NP (the nondeterministic TM question)
- Qualification for Monday's presentations
- Send me a URL for your site before 11:59pm Friday
- Basic functionality should be working
- You can keep developing after this (if something breaks, you won't be disqualified, but be smart and keep a copy of what works!)

Lecture 40: Computing with Glue and Photons
33 Computer Science```

