
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 6:
Programming
with Data

2Lecture 6: Data

Ways to Design Programs

1. Think about what you want to do, and
turn that into code.

2. Think about what you need to
represent, and design your code
around that.

Which is better?

3Lecture 6: Data

History of Scheme

• Scheme [Guy Steele & Gerry Sussman, 1975]

Guy Steele co-designed Scheme and created the
first Scheme interpreter for his 4th year project

More recently, Steele specified Java [1995]

– “Conniver” [1973] and “Planner” [1967]

• Based on LISP [John McCarthy, 1958]

–Based on Lambda Calculus

–Alonzo Church, 1930s

–Last few lectures in course

4Lecture 6: Data

LISP

“Lots of Insipid Silly Parentheses”

“LISt Processing language”

Lists are pretty important – hard to
write a useful Scheme program
without them.

5Lecture 6: Data

Making Lists

6Lecture 6: Data

Making a Pair

> (cons 1 2)

(1 . 2)

cons constructs a pair

1 2

2

7Lecture 6: Data

Splitting a Pair

> (car (cons 1 2))

1

> (cdr (cons 1 2))

2

car extracts first part of a pair

cdr extracts second part of a pair

1 2

car cdr

8Lecture 6: Data

Why “car” and “cdr”?
• Original (1950s) LISP on IBM 704

– Stored cons pairs in memory registers

– car = “Contents of the Address part of the
Register”

– cdr = “Contents of the Decrement part of the
Register” (“could-er”)

• Doesn’t matter unless you have an IBM 704

• Think of them as first and rest

(define first car)

(define rest cdr)

(The DrScheme “Pretty Big” language
already defines these, but they are not part

of standard Scheme)

9Lecture 6: Data

Implementing cons, car and cdr

(define (cons a b)

(lambda (w) (if w a b)))

(define (car pair) (pair #t)

(define (cdr pair) (pair #f)

Scheme provides primitive implementations for cons,
car, and cdr. But, we could define them ourselves.

10Lecture 6: Data

Pairs are fine, but how do
we make threesomes?

11Lecture 6: Data

Triple

A triple is just a pair where one of the
parts is a pair!

(define (triple a b c)

(cons a (cons b c)))

(define (t-first t) (car t))

(define (t-second t) (car (cdr t)))

(define (t-third t) (cdr (cdr t)))

12Lecture 6: Data

Quadruple

A quadruple is a pair where the second
part is a triple

(define (quadruple a b c d)
(cons a (triple b c d)))

(define (q-first q) (car q))
(define (q-second q) (t-first (cdr t)))
(define (q-third t) (t-second (cdr t)))
(define (q-fourth t) (t-third (cdr t)))

3

13Lecture 6: Data

Multuples

• A quintuple is a pair where the second part is
a quadruple

• A sextuple is a pair where the second part is
a quintuple

• A septuple is a pair where the second part is
a sextuple

• An octuple is group of octupi

• A ? is a pair where the second part is a …?

14Lecture 6: Data

Lists

List ::= (cons Element List)

A list is a pair where the second part is a list.

One big problem: how do we stop?
This only allows infinitely long lists!

15Lecture 6: Data

Lists

List ::= (cons Element List)

List ::=

A list is either:
a pair where the second part is a list

or, empty

It’s hard to write this!

16Lecture 6: Data

Null

List ::= (cons Element List)

List ::=

A list is either:
a pair where the second part is a list

or, empty (null)

null

17Lecture 6: Data

List Examples

> null
()
> (cons 1 null)
(1)

> (list? null)
#t
> (list? (cons 1 2))
#f
> (list? (cons 1 null))
#t

18Lecture 6: Data

More List Examples

> (list? (cons 1 (cons 2 null)))
#t
> (car (cons 1 (cons 2 null)))
1
> (cdr (cons 1 (cons 2 null)))
(2)

4

19Lecture 6: Data

Recap

• A list is either:

a pair where the second part is a list

or null (note: book uses nil)

• Pair primitives:

(cons a b) Construct a pair <a, b>

(car pair) First part of a pair

(cdr pair) Second part of a pair

20Lecture 6: Data

Problem Set 2:
Programming with Data

• Representing a card

car cdr

Pair of rank (Ace) and suit (Spades)

21Lecture 6: Data

Problem Set 2:
Programming with Data

• Representing a card: (cons <rank> <suit>)

• Representing a hand

(list (make-card Ace clubs)
(make-card King clubs)
(make-card Queen clubs)
(make-card Jack clubs)
(make-card 10 clubs)

22Lecture 6: Data

length

• Define a procedure that takes as input a
list, and produces as output the length of
that list.

(length null) � 0

(length (list 1 2 3)) � 3

(length (list 1 (list 2 3 4))) � 2

23Lecture 6: Data

Charge

• Its okay if you are confused now.

• Lots of opportunities to get unconfused:

– Problem Set 2 (and PS3 and PS4)

• Lab hours Sunday, Tuesday, Wednesday, and
Thursday

– Read the Course Book

– Class Wednesday and Friday – lots of
examples programming with procedures and
recursive definitions

– Office Hours (Wednesdays and Thursdays)

