
cs150: Exam 1 - Comments 

 

Due: Monday, 26 February at 12:02pm 

Directions 
Work alone. You may not discuss these problems or anything related to the material covered by 

this exam with anyone except for the course staff between receiving this exam and class Monday.  

Open resources. You may use any books you want, lecture notes, slides, your notes, and problem 

sets. You may also use DrScheme, but it is not necessary to do this. You may also use external 

non-human sources including books and web sites. If you use anything other than the course 

books, slides, and notes, cite what you used. You may not obtain any help from other humans 

other than the course staff.  

Answer well. Answer all questions 1-9 (question 0 is your name, which hopefully everyone will 

receive full credit for), and optionally answer questions 10-12. The questions are not necessarily 

in order of increasing difficulty, so if you get stuck on one question you should continue on to the 

next question. There is no time limit on this exam, but it should not take a well-prepared student 

more than a few hours to complete. It may take you longer, though, so please do not delay 

starting the exam.  There is no valid excuse (other than a medical or personal emergency) for 

running out of time on this exam. (Abridged from original exam.) 

Full credit depends on the clarity and elegance of your answer, not just correctness. Your 

answers should be as short and simple as possible, but not simpler. Your programs will be judged 

for correctness, clarity and elegance, but you will not lose points for trivial errors (such as 

missing a closing parenthesis).  

Average Scores  
0 1 2 3 4 5 6 7 8 9 Total 

9.95 6.37 4.86 7.54 9.22 8.18 8.46 8.60 7.82 7.96 79.0 
 

0 2 4 6 8 10 12 14 16

<60

60-74

75-84

85-94

95+

 

Name: Kaume Mentz 



 2 

1. The and-expression is a special form for logical conjunction. An and-expression has any 

number of operand expressions. For example, all of the expressions below are valid and-

expressions (question 2 will describe the evaluation rule for and-expressions):  
> (and) 

#t 

>(and (= 2 2) (= 3 3)) 

#t 

>(and 3 6 2 5 3 #f 2 5 (car 3)) 

#f 

Define a BNF grammar rule for the AndExpression. You may assume all the grammar rules from 

Chapter 3 are defined and use them in your answer.  

 

 

2. For simplicity, the rest of this question assumes a limited version of the and expression that 

only takes two operands:(and expr1 expr2) This simplified and-expression behaves 

identically to the standard and-expression when applied to two operands, but is not defined for 

other than two operands. The evaluation rule for an and-expression is:  

To evaluate an and-expression, evaluate the first subexpression. If it evaluates to a false 

value, the value of the and-expression is false. Otherwise, the value of the and-expression 

is the value of the second subexpression.  

Dana Carver doesn't like unnecessary special forms and suggest that the and special form can be 

replaced with this procedure:  

     (define (and e1 e2) (if e1 e2 #f)) 

Provide a convincing argument that the and procedure above is not equivalent to the and-

expression special form. (Hint: describe inputs where they mean different things.)  

Easiest answer: 
AndExpression ::= (and MoreExpressions) 
 

If you were worried that was too easy (which apparently many 
people were!), you could write it without using MoreExpressions: 

 
AndExpression ::= (and ZeroOrMoreExpressions) 

ZeroOrMoreExpressions ::= ε 
ZeroOrMoreExpressions ::= Expressions ZeroOrMoreExpressions 

The key different is that the special form and only evaluates the second 

operand expression if the first one evaluates to a true value, whereas any 

procedure application must evaluate all subexpressions.  This different is 
apparent if the second expression does not evaluate to a value (either 

because it never finishes evaluating or because it there is an evaluation 
error).  For example, 
 (and #f (+ #f 7)) 

evaluates to #f using the special form and expression, but would produce 

and error when the + application is evaluated with the procedure. 
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For convenience, here is the find-maximum procedure from Chapter 4:  
(define (find-maximum f low high) 

    (if (= low high)  

        (f low) 

        (max (f low)  

             (find-maximum f (+ low 1) high))))) 

3. (This is a slight rewording of Question 2 of notes 5 and Exercise 4.8 in the book.) The find-
maximum procedure we defined in Chapter 4 (and Notes 5) evaluates to the maximum value of 

the input function in the range, but does not provide the input value that produces that maximum 

output value. Define a procedure, find-maximizing-input that takes the same inputs as 

find-maximum, but outputs the input value in the range that produces the maximum output 

value.  

For example:  
> (find-maximizing-input (lambda (x) x) 3 150) 

150 

> (find-maximizing-input (lambda (x) (- (* 12 x) (* x x))) 0 50) 

6 

For maximum credit, your answer should have running time in Θ(n) where n is the difference 

between the values of the high and low inputs. (But you will receive most of the credit even if 

your solution is less efficient.)  

 

The simplest definition is probably: 
(define (find-maximizing-input f low high) 

   (if (= low high)  

       low 

       (if (> (f low) 

              (f (find-maximizing-input f (+ low 1) high))) 

           low 

           (find-maximizing-input f (+ low 1) high)))) 

 
The problem with this definition is each application involves two 

recursive calls.  This means the growth will be similar to the slow 
Fibonacci procedure!  It is in Θ(2

n
) where n is the difference between 

the values of the high and low inputs since increasing the different by 
one doubles the amount of work to do. 

 
To obtain a linear-time procedure, we need to avoid evaluating the 

recursive application twice.  The easiest way is to use a let expression: 

(define (find-maximizing-input f low high) 

   (if (= low high)  

       low 

       (let ((best (find-maximizing-input f (+ low 1) 

                                          high))) 

          (if (> (f low) (f best)) 

              low 

              best)))) 
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4. Define a make-incrementer procedure that takes one input, the increment number, as input 

and produces as output a procedure. The output procedure is a procedure that takes one number as 

input, and produces as output the value of that number increased by the increment number.  

 

For example:  
> (make-incrementer 1) 

#<procedure> 

> ((make-incrementer 2) 148) 

150 

>((make-incrementer 3) ((make-incrementer 7) 1)) 

11 

 

5. Define a procedure find-worst that takes two inputs: a list and a comparison procedure. As 

output it produces the element in the list which is the worst according to the comparison 

procedure.  

For example:  
> (find-worst (list 1 5 0) <) 

5 

(define (make-incrementer n)  

   (lambda (x) (+ x n))) 

There are many possibilities.  One is similar to the way we defined find-best: 

(define (find-worst lst cf)  

    (if (null? (cdr lst)) (car lst)  

        (if (cf (car lst) (find-worst (cdr lst) cf))  

            (find-worst (cdr lst) cf)  

            (car lst)))) 

Another possibility (which is very inefficient) is to use sort and reverse to find 

the last element: 
(define (find-worst lst cf)  

  (car (reverse (sort lst cf)))) 

We could also define it using find-best, but swapping the comparison inputs: 

(define (find-worst lst cf) 

  (find-best lst (lambda (a b) (cf b a)))) 
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6. Draw a picture illustrating the asymptotic growth rates of the following functions and sets of 

functions:  

a. n
2
 + 3n  

b. O(2n)  

c. Θ(n)  

d. Ω(n
2
)  

 

The center of your picture should be the slowest growing functions, and as you move further from 

the center, functions grow faster (similar to Figure 6.2 of the book). If you are depicting a set, use 

arrows or color to make it clear what space is included in the set.   (There is no need for a fancy 

drawing.  It is fine to hand draw something clear.) 

 

b. O(2n) ≡ O(n) 

d. Ω(n
2
)  a. n

2
 + 3n  

(a point on 

the Ω(n2) 

c. Θ(n) (the ring)  
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Another cryptographic invention of Alan Turing’s at Bletchley Park was a process then known as 

banburismus (more commonly now called sequential analysis) developed to determine if two 

intercepted Enigma messages had been encrypted using the same key.  

 

The goal of the banburismus technique is to determine when two intercepted Enigma messages 

were encrypted using the same or similar initial machine settings. The key insight is identical to 

that behind the double delta technique used by Colossus: since the letter distribution in a natural 

language (in this cases German) is not even, it is much more likely that the same letters will occur 

at a given position than would occur by random chance (which is approximately the case if the 

Enigma machines were not configured with similar wheel settings).  

 

So, to determine if two messages were sent by Enigma machines with the same wheel settings we 

need to count the number of occurrences in the ciphertext where the two messages have the same 

letter at the same position. If that number significantly exceeds the number predicted by random 

chance, then it is likely the messages were encoded using the same wheel settings.  

 

7. Define a procedure count-matches that takes as input two lists of characters (representing 

two intercepted ciphertexts) and outputs a number that is the number of positions where the 

characters in the two lists match (use eq? to test two characters for equality).  

 

For example,  
> (count-matches (list #\A #\B #\C) (list #\B #\B #\C) 

2 

> (count-matches (list #\A #\B #\C) (list #\A)) 

1 

>(count-matches (list #\A #\B #\C) (list #\A #\B #\C #\D)) 

3 

(define (count-matches lst1 lst2) 

  (if (or (null? lst1) (null? lst2)) 

      0 

      (+ (if (eq? (car lst1) (car lst2)) 1 0) 

         (count-matches (cdr lst1) (cdr lst2))))) 
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Since the Enigma wheels rotate, it was also possible to use this technique to find messages sent 

using similar initial configurations by trying different alignments of the two messages. For 

example, suppose the intercepted messages are:  
 

Message 1: GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQSSPZXARIXEABQIRUCKHGWUEBPF 

Message 2: YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVUQILBJUABNLKMKDJMENUNQ 

(this example is from http://en.wikipedia.org/wiki/Banburismus) 

 

The Bletchley Park analysts would try aligning the messages at different starting points, looking 

for ways of aligning them that have a high number of matches. For example:  
 

Align 0: 
GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQSSPZXARIXEABQIRUCKHGWUEBPF 

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVUQILBJUABNLKMKDJMENUNQ 
 

Align +1 
GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQSSPZXARIXEABQIRUCKHGWUEBPF 

 YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVUQILBJUABNLKMKDJMENUNQ 
... 

Align +9 
GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQSSPZXARIXEABQIRUCKHGWUEBPF 

         YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVUQILBJUABNLKMKDJMENUNQ 

 

With the Align +9, there are 9 matches which is promising (that is, it would be very unlikely to 

occur by chance, so the wheel settings are probably similar).  

 

8. Define a procedure find-best-alignment that takes as input two lists, representing two 

intercepted ciphertexts, and outputs the number of matching letters in the best possible alignment.  

 

A good answer will find the best positive alignment (only considering moving the second 

message to the right, as in the example above). An excellent answer will consider both positive 

and negative alignments (moving the second message to the left instead).  

For example: 
 

> (find-best-alignment (list #\A #\B #\C) (list #\B #\B #\C)) 

2 

> (find-best-alignment (list #\A #\B #\C #\D) (list #\B #\C #\D)) 

3 

> (find-best-alignment (list #\A #\B #\C #\D)  

                       (list #\F #\A #\B #\C #\D)) 

4 

This is the correct result for “excellent” answers that consider negative alignments. The 

answer using just positive alignments is 0. 

 

Hint: note that the letters with no corresponding letter in the other message don't matter. So, we 

could view Align +1 above as  
    XCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQSSPZXARIXEABQIRUCKHGWUEBPF 

    YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVUQILBJUABNLKMKDJMENUNQ 

without the leading G in message one.  

 

 

(Answer space is on the next page) 
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8 (continued). Define your find-best-alignment procedure here: 

 

9. Analyze the running time of your find-best-alignment procedure. Your analysis should 

include a description of the running time using Θ notation.  

 

The first procedure is a “good” solution, it finds the best alignment 
value, only trying positive alignments: 
 

(define (find-best-pos-alignment msg1 msg2) 

  (if (or (null? msg1) (null? msg2)) 

      0 

      (pick-better 

       (count-matches msg1 msg2) 

       (find-best-pos-alignment (cdr msg1) msg2) 

       >))) 

 

To find the best alignment considering both directions, we need to 

slide both left and right.  The easiest way to do this is to just switch 
the order of the operands: 
 

(define (find-best-alignment msg1 msg2) 

  (pick-better 

   (find-best-pos-alignment msg1 msg2) 

   (find-best-pos-alignment msg2 msg1) 

   >)) 

Our procedure has running time in Θ(n
2
) where n is the total number of 

elements in the input lists.   

 

The find-best-pos-alignment procedure cdr’s down the first input list.  

It will make n1 recursive calls, where n1 is the number of elements in 

the first input list.  Each application involves an application of the 
constant time procedures null? and pick-better (from class), as well as 

the count-matches procedure we defined for question 7.  That 
procedure cdrs down the input lists, doing constant work each time, so 
it has running time in Θ(n) where n is the length of the shortest input 

list.  In the worst case, msg1 and msg2 are the same lengths initially, 

so on average, this is ½ the length of the first input to find-best-pos-
alignment, which is ½ n1.  So, the total running time for the find-best-

pos-alignment application is in Θ(n
2
): there are  Θ(n) applications of a 

procedure that has running time in Θ(n). 
 

The find-best-alignment procedure applies find-best-pos-alignment 
twice, so its running time is in Θ(n

2
) + Θ(n

2
) which is equivalent to being 

in Θ(n
2
). 


