Lecture 15:
Quicker Sorting

Exam 1

¢ Handed out at end of Friday’s class, due at
the beginning of Monday's class

¢ Open non-human resources but no help from
other people

¢ Covers everything through today including:
— Lectures 1-15, Book Chapters 2-7, PS 1-4

— Chapter 8 (out today) is not covered (but
understanding it may help you prepare for exam)

¢ Review Session, Weds 6:30 in Olsson 228E

- :
Lecture 15: Quicker Sorting 2 Hilli§ Complg‘ehr“ §ge&§ A

Sorting Cost

(define (best-first-sort Ist cf)
(if (null? Ist) Ist
(let ((best (find-best Ist cf)))
(cons best (best-first-sort (delete Ist best) cf)))))
(define (find-best Ist cf)
(if (= 1 (length Ist)) (car Ist)
(pick-better cf (car Ist) (find-best (cdr Ist) cf))))

The running time of best-first-sort is in ®(n2) where
n is the number of elements in the input list.

|Assuming, the procedure passed as cf has constant running time. |

Divide and Conquer sorting?

e Best first sort: find the lowest in the list,
add it to the front of the result of sorting
the list after deleting the lowest

e Insertion sort: insert the first element of
the list in the right place in the sorted rest
of the list

Lecture 15: Quicker Sorti #= Computer Science
ecture 15: Quicker Sorting 3 By Ll el

Lecture 15: Quicker Sorti #= Computer Science
ure 15: Quicker Sorting 4 By Ll el

insert-sort

(define (insert-sort Ist cf)
(if (null? Ist) null
(insert-one (car Ist)
(insert-sort (cdr Ist) cf) cf)))

Lecture 15: Quicker Sorting 5

insert-one

(define (insert-one el Ist cf)
(if (null? Ist) (list el)
(if (cf el (car Ist)) (cons el Ist)
(cons (car Ist)
(insert-one el (cdr Ist) cf)))))

P -
m; T '1€1¢
fi Computer Science |

Lecture 15: Quicker Sorting 6

P -
m; T '1€1¢
fi Computer Science |

How much work is insert-sort?

(define (insert-sort Ist cf)
(if (null? Ist) null
(insert-one (car Ist) (insert-sort (cdr Ist) cf) cf)))

(define (insert-one el Ist cf)
(if (null? Ist) (list el)
(if (cf el (car Ist)) (cons el Ist)
(cons (car Ist) (insert-one el (cdr Ist) cf)))))
How many times does insert-
sort evaluate insert-one?
n times (once for each element)

insert-sort has running time in ®(n2) where n is
the number of elements in the input list

running time of
insert-one is in O(n)

- :
Lecture 15: Quicker Sorting 7 fils Computer Science |

> (insert-sort < (revintsto 20))
(1234567891011121314151617 18 19 20)
Requires 190 applications of <

> (insert-sort < (intsto 20))
(1234567891011121314151617 18 19 20)
Requires 19 applications of <

> (insert-sort < (rand-int-list 20))
(0111619 23 26 31 323234424553 63 648182
84 84 92)

Requires 104 applications of <

Lecture 15: Quicker Sorting 9

— -
il Computer Science |

Which is better?

o Is insert-sort faster than best-first-sort?

- .
Lecture 15: Quicker Sorting 8 il Comppf‘eyr SCIE{IICC

> (best-first-sort < (intsto 20))

(1234567891011121314151617 1819
20)
Requires 210 applications of <

> (best-first-sort < (rand-int-list 20))

(44161819 2023323651535967697375
828288 89)
Requires 210 applications of <

- .
Lecture 15: Quicker Sorting 10 Hiilli§ Computg\rﬁ clence

best-first-sort vs. insert-sort

* Both are ®(n?) worst case (reverse list)

¢ Both are ®(n?) when sorting a
randomly ordered list

—But insert-sort is about twice as fast

e insert-sort is ©(n) best case (ordered
input list)

Can we do better?

(insert-one < 88
(list 1235623637789 90))

Suppose we had procedures
(first-half Ist)

(second-half Ist)
that quickly divided the list in two halves?

- :
Lecture 15: Quicker Sorting 11 il Computer Science |

- :
Lecture 15: Quicker Sorting 12 fil Computer Science |

Charge

e Exam 1 is out Friday, due Monday
e Exam Review, Wednesday 6:30 in Olsson

228E

Lecture 15: Quicker Sorting

13

= -
m; T '1€1¢
fi Computer Science |

