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Exam 1 Reminders

• Review Session is tonight at 6:30 in 
Olsson 228E

• I have office hours after class today and 
Thursday at 3:30

• Kinga will be in Small Hall Friday morning, 
10-11:30am

• If you have topics you want me to review 
in Friday’s class, email me
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Last class: Sorting Cost
(define (best-first-sort lst cf)
(if (null? lst) lst

(let ((best (find-best lst cf)))
(cons best (best-first-sort (delete lst best) cf)))))

(define (find-best lst cf)
(if (= 1 (length lst)) (car lst)

(pick-better cf (car lst) (find-best (cdr lst) cf))))

The running time of best-first-sort is in Θ(n2) where 
n is the number of elements in the input list.

This is wrong!
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Length

(define (length lst)
(if (null? lst) 0

(+ 1 (length (cdr lst)))))

The running time of length is in Θ(n) where n is the 
number of elements in the input list.
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find-best Cost
(define (find-best lst cf)

(if (= 1 (length lst)) (car lst)
(pick-better cf (car lst) (find-best (cdr lst) cf))))

The running time of find-best (using length) is in Θ(n2) where 
n is the number of elements in the input list.

assumption: cf is constant time procedure

n = number of elements in input list

there are n recursive applications of find-best

each one involves an application of (length lst) which is in Θ(n)
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Sorting Cost
(define (best-first-sort lst cf)
(if (null? lst) lst

(let ((best (find-best lst cf)))
(cons best (best-first-sort (delete lst best) cf)))))

(define (find-best lst cf)
(if (= 1 (length lst)) (car lst)

(pick-better cf (car lst) (find-best (cdr lst) cf))))

The running time of best-first-sort is in Θ(n3) where 
n is the number of elements in the input list.

This is right (but very inefficient)!
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best-first-sort
(define (best-first-sort lst cf)
(if (null? lst) lst

(let ((best (find-best lst cf)))
(cons best (best-first-sort (delete lst best) cf)))))

(define (find-best lst cf)
(if (null? (cdr lst)) (car lst)

(pick-better cf (car lst) (find-best (cdr lst) cf))))

The running time of best-first-sort is in Θ(n2) where 
n is the number of elements in the input list.

This is right!
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Last class: insert-sort

Assuming cf is a constant time procedure, insert-
sort has running time in Θ(n2) where n is the 
number of elements in the input list

(define (insert-sort lst cf)
(if (null? lst) null

(insert-one (car lst) (insert-sort (cdr lst) cf) cf)))

(define (insert-one el lst cf)
(if (null? lst) (list el)

(if (cf el (car lst)) (cons el lst)
(cons (car lst) (insert-one el (cdr lst) cf)))))
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Can we do better?

(insert-one < 88 

(list 1 2 3 5 6 23 63 77 89 90))

Suppose we had procedures

(first-half lst)
(second-half lst)

that quickly divided the list in two halves?
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insert-one using halves

(define (insert-one el lst cf)
(if (null? lst) (list el)

(if (null? (cdr lst))
(if (cf el (car lst)) (cons el lst) (list (car lst) el))
(let ((front (first-half lst))

(back (second-half lst)))     
(if (cf el (car back))

(append (insert-one el front cf) back)          
(append front 

(insert-one el back cf)))))))
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Evaluating insert-one
> (insert-one < 3 (list 1 2 4 5 7))
|(insert-one #<procedure:traced-<> 3 (1 2 4 5 7))
| (< 3 1)
| #f
| (< 3 5)
| #t
| (insert-one #<procedure:traced-<> 3 (1 2 4))
| |(< 3 1)
| |#f
| |(< 3 4)
| |#t
| |(insert-one #<procedure:traced-<> 3 (1 2))
| | (< 3 1)
| | #f
| | (< 3 2)
| | #f
| | (insert-one #<procedure:traced-<> 3 (2))
| | |(< 3 2)
| | |#f
| | (2 3)
| |(1 2 3)
| (1 2 3 4)
|(1 2 3 4 5 7)
(1 2 3 4 5 7)

Every time we call insert-one, 
the length of the list is 
approximately halved!

(define (insert-one el lst cf)

(if (null? lst) (list el)
(if (null? (cdr lst))

(if (cf el (car lst)) 
(cons el lst) 
(list (car lst) el))

(let ((front (first-half lst))
(back (second-half lst)))     

(if (cf el (car back))
(append (insert-one el front cf) back)          

(append front 
(insert-one el back cf)))))))
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How much work is insert-one?

Each time we call
insert-one, the size of
lst halves.  So, doubling
the size of the list only 
increases the number of
calls by 1.

List Size Number of insert-one applications
1 1

2 2
4 3

8 4
16 5

(define (insert-one el lst cf)
(if (null? lst) (list el)

(if (null? (cdr lst))
(if (cf el (car lst)) 

(cons el lst) 
(list (car lst) el))

(let ((front (first-half lst))
(back (second-half lst)))     

(if (cf el (car back))

(append (insert-one el front cf) back)          
(append front 

(insert-one el back cf)))))))
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Remembering Logarithms

logb n = x means bx = n

What is log2 1024?

What is log10 1024?

Is log10 n in Θ(log2 n)?
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Changing Bases

logbn = (1/logkb) logk n

If k and b are 
constants,

this is constant

Θ(log2n) ≡ Θ(log10n) ≡ Θ(log n)  
No need to include a constant base within asymptotic operators.
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Number of Applications

Assuming the list is well-balanced, 
the number of applications of 
insert-one is in Θ(log n) where n is 

the number of elements in the 
input list.
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insert-sort

insert-sort using halves would have running time in 
Θ(n log n) if we had first-half, second-half, and 
append procedures that run in constant time

(define (insert-one el lst cf)
(if (null? lst) (list el)

(if (null? (cdr lst))

(if (cf el (car lst)) 
(cons el lst) 

(list (car lst) el))
(let ((front (first-half lst))

(back (second-half lst)))     
(if (cf el (car back))

(append (insert-one el front cf) back)          

(append front 
(insert-one el back cf)))))))

(define (insert-sort lst cf)

(if (null? lst) null
(insert-one 

(car lst) 

(insert-sort (cdr lst) cf)
cf)))
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Orders of Growth
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Is there a fast first-half procedure?

• No! (at least not on lists)

• To produce the first half of a list length n, 
we need to cdr down the first n/2 
elements

• So, first-half has running time in Θ(n)
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Making it faster
We need to either:

1. Reduce the number of applications of 
insert-one in insert-sort

2. Reduce the number of applications of 
insert-one in insert-one

3. Reduce the time for each application of 
insert-one

Impossible – need to consider each element

Unlikely…each application already halves the list

Need to make first-half, second-half and append faster than Θ(n)
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Happy Bird Tree
by Jon Morgan and Nadine Natour
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Sorted Binary Trees

el

A tree containing

all elements x such

that (cf x el) is true

A tree containing

all elements x such
that (cf x el) is false

left right

23Lecture 16: Quickest Sorting

Tree Example

5

2 8

741

3 cf: <

null null
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Representing Trees

(define (make-tree left el right)
(cons el (cons left right))

(define (tree-element tree)
(car tree))

(define (tree-left tree)
(car (cdr tree)))

(define (tree-right tree)
(cdr (cdr tree)))

left and right are trees
(null is a tree)

tree must be a non-null tree

tree must be a non-null tree

tree must be a non-null tree
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Representing Trees

5

2 8

1
(make-tree (make-tree (make-tree null 1 null) 

2 
null) 

5 
(make-tree null 8 null))
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insert-one-tree

(define (insertel-tree cf el tree)
(if (null? tree)

(make-tree null el null)
(if (cf el (get-element tree))

(make-tree
(insert-one-tree cf el (get-left tree))
(get-element tree)
(get-right tree))

(make-tree
(get-left tree)
(get-element tree)
(insert-one-tree cf el (get-right tree))))))

If the tree is null, make a new tree 

with el as its element and no left or
right trees.

Otherwise, decide

if el should be in 
the left or right subtree.

insert it into that
subtree, but leave the

other subtree unchanged.
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How much work is insert-one-tree?
(define (insert-one-tree cf el tree)
(if (null? tree)

(make-tree null el null)
(if (cf el (get-element tree))

(make-tree

(insertel-tree cf el (get-left tree))
(get-element tree) (get-right tree))

(make-tree (get-left tree)

(get-element tree)
(insertel-tree cf el (get-right tree))))))

Each time we call
insert-one-tree, the size 
of the tree approximately 
halves (if it is well 
balanced). 

Each application is 
constant time.

The running time of insertel-tree is in Θ (log n)
where n is the number of elements in the input tree, 
which must be well-balanced.
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insert-sort-helper

(define (insert-sort-helper cf lst)
(if (null? lst) null

(insert-one-tree 
cf (car lst) 
(insert-sort-helper cf (cdr lst)))))

No change (other than using insert-one-tree)…but evaluates to a tree not a list!

(((() 1 ()) 2 ()) 5 (() 8 ()))
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Charge

• Exam 1 is out Friday, due Monday

• Exam Review, Wednesday 6:30 in Olsson 
228E


