David Evan
http://’y‘vww.cs.virginia.edu/evan
i

Exam 1 Reminders

e Review Session is tonight at 6:30 in
Olsson 228E

« I have office hours after class today and
Thursday at 3:30

e Kinga will be in Small Hall Friday morning,
10-11:30am

o If you have topics you want me to review
in Friday’s class, email me

- :
Lecture 16: Quickest Sorting 2 HiiliE C‘-"“P“f‘e,\"mskﬁ‘,e{,l‘ffu

Last class: Sorting Cost

(define (best-first-sort Ist cf)
(if (null? Ist) Ist
(let ((best (find-best Ist cf)))
(cons best (best-first-sort (delete Ist best) cf)))))
(define (find-best Ist cf)
(if (= 1 (length Ist)) (car Ist)
(pick-better cf (car Ist) (find-best (cdr Ist) cf))))

The running time of best-first-sort is in ®(n2):where
n is the number of elements in the input list.

This is wrong!

Length

(define (length Ist)
(if (null? Ist) O
(+ 1 (length (cdr Ist)))))

The running time of length is in ®(n) where n is the
number of elements in the input list.

- .
Lecture 16: Quickest Sorting 3 Hiilli§ Computg\rﬁ clence

- .
Lecture 16: Quickest Sorting 4 Hiilli§ Computg\rﬁ clence

find-best Cost

(define (find-best Ist cf)
(if (= 1 (length Ist)) (car Ist)
(pick-better cf (car Ist) (find-best (cdr Ist) cf))))

assumption: ¢f is constant time procedure

n = number of elements in input list

there are n recursive applications of find-best

each one involves an application of (length Ist) which is in ®(n)

The running time of find-best (using length) is in ©(n?) where
n is the number of elements in the input list.

Lecture 16: Quickest Sorting 5

Sorting Cost

(define (best-first-sort Ist cf)
(if (null? Ist) Ist
(let ((best (find-best Ist cf)))
(cons best (best-first-sort (delete Ist best) cf)))))
(define (find-best Ist cf)
(if (= 1 (length Ist)) (car Ist)
(pick-better cf (car Ist) (find-best (cdr Ist) cf))))

The running time of best-first-sort is in @(n%) where
n is the number of elements in the input list.

This is right (but very inefficient)!

= -
m; T '1€1¢
fi Computer Science |

- :
Lecture 16: Quickest Sorting 6 HiiliE C‘-"“P“f‘e,\"mskﬁ‘,e{,l‘ffu

best-first-sort

(define (best-first-sort Ist cf)
(if (null? Ist) Ist
(let ((best (find-best Ist cf)))
(cons best (best-first-sort (delete Ist best) cf)))))
(define (find-best Ist cf)
(if (null? (cdr Ist)) (car Ist)
(pick-better cf (car Ist) (find-best (cdr Ist) cf))))

The running time of best-first-sort is in ®(n2) where
n is the number of elements in the input list.

This is right!

Lecture 16: Quickest Sorting 7

= -
m; T '1€1¢
fi Computer Science |

Can we do better?

(insert-one < 88
(list 123562363 7789 90))

Suppose we had procedures
(first-half Ist)

(second-half Ist)
that quickly divided the list in two halves?

- P
Lecture 16: Quickest Sorting 9 i Computgr Scne{lce
g priiipgioed)

Last class: insert-sort

(define (insert-sort Ist cf)
(if (null? Ist) null
(insert-one (car Ist) (insert-sort (cdr Ist) cf) cf)))

(define (insert-one el Ist cf)
(if (null? Ist) (list el)
(if (cf el (car Ist)) (cons el Ist)
(cons (car Ist) (insert-one el (cdr Ist) cf)))))

Assuming cf is a constant time procedure, insert-
sort has running time in ®(n2) where n is the
number of elements in the input list

- .
Lecture 16: Quickest Sorting 8 il Comppf‘eyr Sctegce

insert-one using halves

(define (insert-one el Ist cf)
(if (null? Ist) (list el)
(if (null? (cdr Ist))
(if (cf el (car Ist)) (cons el Ist) (list (car Ist) el))
(let ((front (first-half Ist))
(back (second-half Ist)))
(if (cf el (car back))
(append (insert-one el front cf) back)
(append front
(insert-one el back cf)))))))

- -
Lecture 16: Quickest Sorting 10 Hiilli§ CO‘"P“‘S&&" c‘\le&f S

Evaluating insert-one

> (insert-one < 3 (list 124 5 7))
|(insert-one #<procedure:traced-<> 3 (1245 7))

How much work is insert-one?

(define (insert-one el Ist cf)

Each time we call e)
(if (null? Ist) (list el)

insert-one, the size o_f (if (null? (cdr Ist))
Ist halves. So, doubling (if (cf el (clalrtlst))
the size of the list only A
increases the number of (let (((Jror;t((ﬁrst—r;aLf Ilsftl)) ”
ack (second-half Ist;
calls by 1. (if (cf el (car back))
(append (insert-one el front cf) back)
(append front
List Size Number of insert-one applications (insert-one el back cf)))))))
1 1
2 2
4 3
8 4
16 5
Lecture 16: Quickest Sorting 12 !TEE Compyf‘ey{“ .Sxf\i?f}‘ﬁ%\

} 5; 30 (define (insert-one el Ist cf)
|(<35) (if (null? Ist) (list el)
|t (if (null? (cdr Ist))
| (insert-one #<procedure:traced-<> 3 (1 2 4)) (if (cf el (car Ist))
| I(<31) (cons el Ist)
| 1#f (list (car Ist) el))
} :5;(34) (let ((front (first-half Ist))
| nser-one #<procedreiraced-<> 3 (12) - nga;:(((Cs:rcg’;‘;'(;‘)a'f Ist))
<
} I if) (append (insert-one el front cf) back)
} I 5; 32) (append front back
insert-
| | (insert-one #<procedure:traced-<> 3 (2)) (Insert-one el back <))
[11(<32)
} Igfs) Every time we call insert-one,
} 51223330 the length of the list is
[(123457) approximately halved!
(123457)
Lecture 16: Quickest Sorting 11 !TEE CO“"P},’}F,{,%E??{,}&E\

Remembering Logarithms

log, n=xmeans b*=n

What is log, 1024?
What is log,, 1024?

Is log,,n in ©(log, n)?

Lecture 16: Quickest Sorting 13

= -
m; T '1€1¢
fi Computer Science |

Number of Applications

4

the number of applications of
insert-one is in ®(log n) where n is
the number of elements in the
input list.

- :
Lecture 16: Quickest Sorting 15 Hiilli§ CO‘"P“‘S&&"%“*&ES

Changing Bases

log,n = (1/1og,b) log, n
H_/

If k and b are
constants,
this is constant

O(log,n) = O(log,,n) = O(log n)

| No need to include a constant base within asymptotic operators. |

- :
Lecture 16: Quickest Sorting 14 Hiillf Compuf‘ey\'m% e

insert-sort

(define (insert-one el Ist cf)
(if (null? Ist) (list el)
(if (null? (cdr Ist))

(define (insert-sort Ist cf)
(if (null? Ist) null

" (if (cf el (car Ist))
e el
Ist (car Ist) el
(insert-sort (cdr Ist) cf) (let ((front (first-half Ist))
cf))) (back (second-half Ist)))

(if (cf el (car back))
(append (insert-one el front cf) back)
(append front
(insert-one el back cf)))))))

insert-sort using halves would have running time in
O(n log n) if we had first-half, second-half, and
append procedures that run in constant time

Orders of Growth

14000

12000 2

/ !
10000

n logn
0O e EEIARLLLELASRL Rb Lt ntain A st rn ik s aetnintaata]
1 41 49 57 65 73 81 89 97 105
Lecture 16: Quickest Sorting 17 ﬁﬁﬁ Compuf‘eyg“ ’Sbg\ie&fg\

Lecture 16: Quickest Sorting 16

— -
i Computer Science |

Is there a fast first-half procedure?

¢ No! (at least not on lists)

¢ To produce the first half of a list length »n,
we need to cdr down the first n/2
elements

¢ So, first-half has running time in ®(n)

Lecture 16: Quickest Sorting 18

= -
m; T '1€1¢
fi Computer Science |

Making it faster

We need to either:

1. Reduce the number of applications of
insert-one in insert-sort

Impossible — need to consider each element

2. Reduce the number of applications of
insert-one in insert-one

Unlikely...each application already halves the list

3. Reduce the time for each application of

insert-one
Need to make first-half, second-half and append faster than @(n)

- :
Lecture 16: Quickest Sorting 19 fils Computer Science |

Happy Bird Tree
by Jon Morgan and Nadine Natour

“Nothing yel. .. How about you, Newbonz"

- :
Lecture 16: Quickest Sorting 20 il Computer Science |

Sorted Binary Trees

left right

A tree containing
all elements xsuch
that (cf xel) is true

A tree containing
all elements x such
that (cf xel) is false

- P
Lecture 16: Quickest Sorting 21 fiiiii Computer Science

i UNIVERSITY o VIRGINA

- P
Lecture 16: Quickest Sorting 22 fiiiii Computer Science

i UNIVERSITY o VIRGINA

Tree Example

cf: <

null null

Representing Trees

(define (make-tree left el right) left and right are trees
(cons el (cons left right)) (null is a tree)

(deﬁne (tree_element tree) tree must be a non-null tree
(car tree))

(define (tree-left tree)
(car (cdr tree)))

tree must be a non-null tree

(define (tree-right tree)
(cdr (cdr tree)))

tree must be a non-null tree

Lecture 16: Quickest Sorting 23

= -
m; T '1€1¢
fi Computer Science |

Lecture 16: Quickest Sorting 24

= -
m; T '1€1¢
fi Computer Science |

Representing Trees

(make-tree (make-tree (make-tree null 1 null)

null)
5
(make-tree null 8 null))

- :
Lecture 16: Quickest Sorting 25 Hiill Compuﬂey\l'ﬁ e

How much work is insert-one-tree?

(define (insert-one-tree cf el tree)

(if (null? tree) Each time we call

(make-tree null el null) insert-one-tree, the size
(if (cf el (get-element tree)) of the tree approximately
(make-tree halves (if it is well
(insertel-tree cf el (get-left tree)) balanced).
(get-element tree) (get-right tree))

(make-tree (get-left tree) .
(get-element tree) Each application is

(insertel-tree cf el (get-right tree)))))) constant time.

The running time of insertel-tree is in ® (log n)
where n is the number of elements in the input tree,
which must be well-balanced.

Lecture 16: Quickest Sorting 27

— -
il Computer Science |

Charge

e Exam 1 is out Friday, due Monday

e Exam Review, Wednesday 6:30 in Olsson
228E

insert-one-tree

(define (insertel-tree cf el tree)
f P If the tree is null, make a new tree
(If (nu”' tree) with el as its element and no left or
(make-tree null el null) right trees.
(if (cf el (get-element tree))
(make-tree
(insert-one-tree cf el (get-left tree)Ptherwise, decide

et-element tree if el should be in
(g) the left or right subtree.

(get-right tree)) insert it into that
(make-tree subtree, but leave the

(get-left tree) other subtree unchanged.
(get-element tree)
(insert-one-tree cf el (get-right tree))))))

- :
Lecture 16: Quickest Sorting 26 Hiillf Compuﬂey\l'ﬁ e

insert-sort-helper

(define (insert-sort-helper cf Ist)
(if (null? Ist) null
(insert-one-tree
cf (car Ist)
(insert-sort-helper cf (cdr Ist)))))

No change (other than using insert-one-tree)...but evaluates to a tree not a list!

«1mM2Mm580N

- :
Lecture 16: Quickest Sorting 28 Hiilli§ CO‘"P“‘S&&"%“*&ES

- :
Lecture 16: Quickest Sorting 29 Hiill Comppﬂey\l'ﬁ i

