

	Last class: Sorting Cost		
	<pre>(define (best-first-sort lst cf) (if (null? lst) lst (let ((best (find-best lst cf))) (cons best (best-first-sort (delete lst best) cf))))) (define (find-best lst cf) (if (= 1 (length lst)) (car lst) (pick-better cf (car lst) (find-best (cdr lst) cf))))</pre>		
	The running time of best-first-sort is in $\Theta(n^2)$ where n is the number of elements in the input list.		
	This is wrong!		
	Lecture 16: Quickest Sorting 3 Computer Science		

Remembering Logarithms			
$\log_{\underline{b}} n = x$ means $b^x = n$			
What is $\log_2 1024$? What is $\log_{10} 1024$?			
	(10g ₂ <i>n</i>):	iter Science	

(defin	How much work is insert-one-tree?			
(if (r (r (if	ull? tree) nake-tree null el null) ; (cf el (get-element tree)) (make-tree (insertel-tree cf el (get-left tree) (get-element tree) (get-right tre	insert-one-tree, the of the tree approxim halves (if it is well balanced).	size 1ately	
	(make-tree (get-left tree) (get-element tree) (insertel-tree cf el (get-right tree	Each application is e)))))) constant time.		
The whe whi	The running time of insertel-tree is in $\Theta(\log n)$ where <i>n</i> is the number of elements in the input tree, which must be well-balanced.			
Lecture 1	6: Quickest Sorting	27 Computer	Science	

