
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 16: Quickest SortingLecture 16: Quickest Sorting

2Lecture 16: Quickest Sorting

Exam 1 Reminders

• Review Session is tonight at 6:30 in
Olsson 228E

• I have office hours after class today and
Thursday at 3:30

• Kinga will be in Small Hall Friday morning,
10-11:30am

• If you have topics you want me to review
in Friday’s class, email me

3Lecture 16: Quickest Sorting

Last class: Sorting Cost
(define (best-first-sort lst cf)
(if (null? lst) lst

(let ((best (find-best lst cf)))
(cons best (best-first-sort (delete lst best) cf)))))

(define (find-best lst cf)
(if (= 1 (length lst)) (car lst)

(pick-better cf (car lst) (find-best (cdr lst) cf))))

The running time of best-first-sort is in Θ(n2) where
n is the number of elements in the input list.

This is wrong!

4Lecture 16: Quickest Sorting

Length

(define (length lst)
(if (null? lst) 0

(+ 1 (length (cdr lst)))))

The running time of length is in Θ(n) where n is the
number of elements in the input list.

5Lecture 16: Quickest Sorting

find-best Cost
(define (find-best lst cf)

(if (= 1 (length lst)) (car lst)
(pick-better cf (car lst) (find-best (cdr lst) cf))))

The running time of find-best (using length) is in Θ(n2) where
n is the number of elements in the input list.

assumption: cf is constant time procedure

n = number of elements in input list

there are n recursive applications of find-best

each one involves an application of (length lst) which is in Θ(n)

6Lecture 16: Quickest Sorting

Sorting Cost
(define (best-first-sort lst cf)
(if (null? lst) lst

(let ((best (find-best lst cf)))
(cons best (best-first-sort (delete lst best) cf)))))

(define (find-best lst cf)
(if (= 1 (length lst)) (car lst)

(pick-better cf (car lst) (find-best (cdr lst) cf))))

The running time of best-first-sort is in Θ(n3) where
n is the number of elements in the input list.

This is right (but very inefficient)!

2

7Lecture 16: Quickest Sorting

best-first-sort
(define (best-first-sort lst cf)
(if (null? lst) lst

(let ((best (find-best lst cf)))
(cons best (best-first-sort (delete lst best) cf)))))

(define (find-best lst cf)
(if (null? (cdr lst)) (car lst)

(pick-better cf (car lst) (find-best (cdr lst) cf))))

The running time of best-first-sort is in Θ(n2) where
n is the number of elements in the input list.

This is right!

8Lecture 16: Quickest Sorting

Last class: insert-sort

Assuming cf is a constant time procedure, insert-
sort has running time in Θ(n2) where n is the
number of elements in the input list

(define (insert-sort lst cf)
(if (null? lst) null

(insert-one (car lst) (insert-sort (cdr lst) cf) cf)))

(define (insert-one el lst cf)
(if (null? lst) (list el)

(if (cf el (car lst)) (cons el lst)
(cons (car lst) (insert-one el (cdr lst) cf)))))

9Lecture 16: Quickest Sorting

Can we do better?

(insert-one < 88

(list 1 2 3 5 6 23 63 77 89 90))

Suppose we had procedures

(first-half lst)
(second-half lst)

that quickly divided the list in two halves?

10Lecture 16: Quickest Sorting

insert-one using halves

(define (insert-one el lst cf)
(if (null? lst) (list el)

(if (null? (cdr lst))
(if (cf el (car lst)) (cons el lst) (list (car lst) el))
(let ((front (first-half lst))

(back (second-half lst)))
(if (cf el (car back))

(append (insert-one el front cf) back)
(append front

(insert-one el back cf)))))))

11Lecture 16: Quickest Sorting

Evaluating insert-one
> (insert-one < 3 (list 1 2 4 5 7))
|(insert-one #<procedure:traced-<> 3 (1 2 4 5 7))
| (< 3 1)
| #f
| (< 3 5)
| #t
| (insert-one #<procedure:traced-<> 3 (1 2 4))
| |(< 3 1)
| |#f
| |(< 3 4)
| |#t
| |(insert-one #<procedure:traced-<> 3 (1 2))
| | (< 3 1)
| | #f
| | (< 3 2)
| | #f
| | (insert-one #<procedure:traced-<> 3 (2))
| | |(< 3 2)
| | |#f
| | (2 3)
| |(1 2 3)
| (1 2 3 4)
|(1 2 3 4 5 7)
(1 2 3 4 5 7)

Every time we call insert-one,
the length of the list is
approximately halved!

(define (insert-one el lst cf)

(if (null? lst) (list el)
(if (null? (cdr lst))

(if (cf el (car lst))
(cons el lst)
(list (car lst) el))

(let ((front (first-half lst))
(back (second-half lst)))

(if (cf el (car back))
(append (insert-one el front cf) back)

(append front
(insert-one el back cf)))))))

12Lecture 16: Quickest Sorting

How much work is insert-one?

Each time we call
insert-one, the size of
lst halves. So, doubling
the size of the list only
increases the number of
calls by 1.

List Size Number of insert-one applications
1 1

2 2
4 3

8 4
16 5

(define (insert-one el lst cf)
(if (null? lst) (list el)

(if (null? (cdr lst))
(if (cf el (car lst))

(cons el lst)
(list (car lst) el))

(let ((front (first-half lst))
(back (second-half lst)))

(if (cf el (car back))

(append (insert-one el front cf) back)
(append front

(insert-one el back cf)))))))

3

13Lecture 16: Quickest Sorting

Remembering Logarithms

logb n = x means bx = n

What is log2 1024?

What is log10 1024?

Is log10 n in Θ(log2 n)?

14Lecture 16: Quickest Sorting

Changing Bases

logbn = (1/logkb) logk n

If k and b are
constants,

this is constant

Θ(log2n) ≡ Θ(log10n) ≡ Θ(log n)
No need to include a constant base within asymptotic operators.

15Lecture 16: Quickest Sorting

Number of Applications

Assuming the list is well-balanced,
the number of applications of
insert-one is in Θ(log n) where n is

the number of elements in the
input list.

16Lecture 16: Quickest Sorting

insert-sort

insert-sort using halves would have running time in
Θ(n log n) if we had first-half, second-half, and
append procedures that run in constant time

(define (insert-one el lst cf)
(if (null? lst) (list el)

(if (null? (cdr lst))

(if (cf el (car lst))
(cons el lst)

(list (car lst) el))
(let ((front (first-half lst))

(back (second-half lst)))
(if (cf el (car back))

(append (insert-one el front cf) back)

(append front
(insert-one el back cf)))))))

(define (insert-sort lst cf)

(if (null? lst) null
(insert-one

(car lst)

(insert-sort (cdr lst) cf)
cf)))

17Lecture 16: Quickest Sorting

Orders of Growth

0

2000

4000

6000

8000

10000

12000

14000

1 9 17 25 33 41 49 57 65 73 81 89 97 105

n
2

n log n

18Lecture 16: Quickest Sorting

Is there a fast first-half procedure?

• No! (at least not on lists)

• To produce the first half of a list length n,
we need to cdr down the first n/2
elements

• So, first-half has running time in Θ(n)

4

19Lecture 16: Quickest Sorting

Making it faster
We need to either:

1. Reduce the number of applications of
insert-one in insert-sort

2. Reduce the number of applications of
insert-one in insert-one

3. Reduce the time for each application of
insert-one

Impossible – need to consider each element

Unlikely…each application already halves the list

Need to make first-half, second-half and append faster than Θ(n)

20Lecture 16: Quickest Sorting

21Lecture 16: Quickest Sorting

Happy Bird Tree
by Jon Morgan and Nadine Natour

22Lecture 16: Quickest Sorting

Sorted Binary Trees

el

A tree containing

all elements x such

that (cf x el) is true

A tree containing

all elements x such
that (cf x el) is false

left right

23Lecture 16: Quickest Sorting

Tree Example

5

2 8

741

3 cf: <

null null

24Lecture 16: Quickest Sorting

Representing Trees

(define (make-tree left el right)
(cons el (cons left right))

(define (tree-element tree)
(car tree))

(define (tree-left tree)
(car (cdr tree)))

(define (tree-right tree)
(cdr (cdr tree)))

left and right are trees
(null is a tree)

tree must be a non-null tree

tree must be a non-null tree

tree must be a non-null tree

5

25Lecture 16: Quickest Sorting

Representing Trees

5

2 8

1
(make-tree (make-tree (make-tree null 1 null)

2
null)

5
(make-tree null 8 null))

26Lecture 16: Quickest Sorting

insert-one-tree

(define (insertel-tree cf el tree)
(if (null? tree)

(make-tree null el null)
(if (cf el (get-element tree))

(make-tree
(insert-one-tree cf el (get-left tree))
(get-element tree)
(get-right tree))

(make-tree
(get-left tree)
(get-element tree)
(insert-one-tree cf el (get-right tree))))))

If the tree is null, make a new tree

with el as its element and no left or
right trees.

Otherwise, decide

if el should be in
the left or right subtree.

insert it into that
subtree, but leave the

other subtree unchanged.

27Lecture 16: Quickest Sorting

How much work is insert-one-tree?
(define (insert-one-tree cf el tree)
(if (null? tree)

(make-tree null el null)
(if (cf el (get-element tree))

(make-tree

(insertel-tree cf el (get-left tree))
(get-element tree) (get-right tree))

(make-tree (get-left tree)

(get-element tree)
(insertel-tree cf el (get-right tree))))))

Each time we call
insert-one-tree, the size
of the tree approximately
halves (if it is well
balanced).

Each application is
constant time.

The running time of insertel-tree is in Θ (log n)
where n is the number of elements in the input tree,
which must be well-balanced.

28Lecture 16: Quickest Sorting

insert-sort-helper

(define (insert-sort-helper cf lst)
(if (null? lst) null

(insert-one-tree
cf (car lst)
(insert-sort-helper cf (cdr lst)))))

No change (other than using insert-one-tree)…but evaluates to a tree not a list!

(((() 1 ()) 2 ()) 5 (() 8 ()))

29Lecture 16: Quickest Sorting

Charge

• Exam 1 is out Friday, due Monday

• Exam Review, Wednesday 6:30 in Olsson
228E

