
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 21:
Think Globally,
Mutate Locally

Most Beautifulest Snowflake in the world
by Jordan Buller, Jon Faulkner

2Lecture 21: Think Globally, Mutate Locally

Review: Names, Places, Mutation
• A name is a place for storing a value.

• A define creates a new place

• A cons application creates two new places,
the car and the cdr

• A frame is a collection of places

• An environment is a frame and a pointer
to a parent environment

• (set! name expr) changes the value in the
place name to the value of expr

3Lecture 21: Think Globally, Mutate Locally

Environments

global

environment

> (define x 3)

+ : #<primitive:+>
null? : #<primitive:null?>

The global environment points to the outermost
frame. It starts with all Scheme primitives.

x : 3

4Lecture 21: Think Globally, Mutate Locally

Procedures

global

environment

> (define double (lambda (x) (+ x x)))

+ : #<primitive:+>
null? : #<primitive:null?>

double: ??

x : 3

5Lecture 21: Think Globally, Mutate Locally

How to Draw a Procedure

• A procedure needs both code and an
environment

– We’ll see why soon

• We draw procedures like this:
Environment
pointer

Code pointer

parameters: x
body: (+ x x)

6Lecture 21: Think Globally, Mutate Locally

How to Draw a Procedure
(for artists only)

Environment
pointer

x
(+ x x)

Input parameters

(in mouth) Procedure Body

2

7Lecture 21: Think Globally, Mutate Locally

Procedures

global

environment

> (define double

(lambda (x) (+ x x)))

+ : #<primitive:+>
null? : #<primitive:null?>

double:

x : 3

parameters: x
body: (+ x x)

8Lecture 21: Think Globally, Mutate Locally

Application

• Old rule: (Substitution model)

Apply Rule 2: Compounds. If the
procedure is a compound procedure,
evaluate the body of the procedure with
each formal parameter replaced by the
corresponding actual argument expression
value.

9Lecture 21: Think Globally, Mutate Locally

New Rule: Application

1. Construct a new frame, enclosed in the
environment of this procedure

2. Create places in that frame with the
names of each parameter

3. Put the values of the parameters in
those places

4. Evaluate the body in the new
environment

10Lecture 21: Think Globally, Mutate Locally

1. Construct a new frame,
enclosed in the
environment of this
procedure

2. Make places in that
frame with the names
of each parameter

3. Put the values of the
parameters in those
places

4. Evaluate the body in
the new environment

global

environment

> (double 4)

8

+ : #<primitive:+>

double: x : 3

parameters: x

body: (+ x x)

x : 4

(+ x x)(+ 4 4)8

11Lecture 21: Think Globally, Mutate Locally

global

environment

+ : #<primitive:+>

nest: x : 3

parameter: x
body: (lambda (x) (+ x x))

x : 3

(define nest
(lambda (x)

(lambda (x)
(+ x x))))

> ((nest 3) 4)
((lambda (x) (+ x x)) 4)

x : 4

(+ x x)

12Lecture 21: Think Globally, Mutate Locally

Evaluation Rule 2 (Names)
If the expression is a name, it evaluates to
the value associated with that name.

To find the value associated with a name,
look for the name in the frame pointed to by
the evaluation environment. If it contains a
place with that name, use the value in that
place. If it doesn’t, evaluate the name
using the frame’s parent environment as the
new evaluation environment. If the frame
has no parent, error (name is not a place).

3

13Lecture 21: Think Globally, Mutate Locally

evaluate-name

(define (evaluate-name name env)

(if (null? env) (error “Undefined name: …”)

(if (frame-contains name (get-frame env))

(lookup name (get-frame env))

(evaluate-name name

(parent-environment

(get-frame env))))))

Hmm…maybe we can define a Scheme interpreter in Scheme!

14Lecture 21: Think Globally, Mutate Locally

Charge

• PS5 due Wednesday

