Lecture 28
Implementi
Interpreters

AN by Al Sk
MIND YOUR HEAD

CS150: Computer Science g
University of Virginia David Evans
Computer Science http://www.cs.virginia.edu/evans

Why learn
Python?

Reason 1: Vocational Skill

Job listings at monster.com in Virginia
(27 March 2007, postings in last 3 months):

Python »7 $40-200K
Java 770 $35-200K
& PS5, PS8 &9138 $60-400K
Scheme 55 $100-999K

- .
Lecture 28: Implementing Interpreters 2 il Complgsr Scte{,lce
S

- P
Lecture 28: Implementing Interpreters 3 fiiiii Computer Science

i UNIVERSITY o VIRGINA

STOP EVERYTHING YOU ARE
DOING RIGHT NOW - THE NEXT FIVE
MINUTES MAY CHANGE YOUR LIFE

1 won't waste your ime - ll get straight to the point. You are looking at an unique
business opportuniy - but as in any business you must be wiling to INVESTIN
'YOURSELF . To be serious in this opportunty as in ANY REAL BUSINESS you must
be willng to INVEST $9.95 after you go through our FREE presentation.

Read On... Or click Here to find out more RIGHT NOW!

1 have a very simple story to tell. 1 was just like you - looking on Monster com to try to
find a beter job because | was sick of my job and | was sick of iving paycheck to
paycheck. | got lucky and found a great opportunity that has given me the financial
freedom | wanted and the freedom to work from home if | chose to so | can stay home:
and spend time with my kids.

1am NOT going to show you a picture of an expensive car, an oceanfont house, or
some other ridiculously expensive luxury, why? Because | don't have those things. I'm not
amilionaire, | don't go on vacation every month, nor do | own some islan

BUT...| DO work at home, 1 DO g
with two kids, 1 DO spend much more time with my kids and husband, and | DO love
‘what | do andi feel very blessed to have found this opportunity

What | am doing on Monster is to give back and share what | have done and share the
opportunity that was given to me as | was desperately looking for a better way of paying
the bills This is NOT a get-rich-quick-SETEY, you WILL have to work hard - but guess
‘what? All of the hard work that you do only benefits YOU!

Sqo[. llawal'lDS\\

What do you have to lose? Simply ciick the link below to hear more about my story
and get more information on how you can do it tool

- Heard Enouoh? CLICK HERE TO GET STARTED:

I !ﬁﬁ Computer Science

s UNIVERSITY o VIKGIN:

Reason 2: Expanding Minds

Languages change the way we think.

The more languages you know, the
more different ways you have of
thinking about (and solving) problems.

Lecture 28: Implementing Interpreters 5

“Jamais Jamais Jamais” from Harmonice Musices
Odhecaton A. Printed by Ottaviano Dei Petrucci in
1501 (first music with movable type)

= -
m; T '1€1¢
fi Computer Science |

Lecture 28: Implementing Interpreters 6

= -
m; T '1€1¢
fi Computer Science |

Zed i J@M SR
&frffﬁ';’ s ﬂf—chjﬂTe
_‘f'*’- Y G@‘U lu.- i

“Jamais Jamais Jamais” from J S Bach, “Coffee Cantata”,
Harmonice Musices Odhecaton A. BWV 211 (1732)

(1501) www.npj.com/homepage/teritowe/jsbhand. htm!

Reason 3: Deepening Understanding

By seeing how the same concepts we
encountered in Scheme are
implemented by a different language,
you will understand those concepts
better (especially classes/objects,
assignment, data abstraction).

Lecture 28: Implementing Interpreters 7

= -
m; T '1€1¢
fi Computer Science |

- .
Lecture 28: Implementing Interpreters 8 il Compuf‘eyr Sctegce

Reason 4: Building Confidence

By learning Python (mostly) on your
own, the next time you encounter a
problem that is best solved using a
language you don't know, you will be
confident you can learn it (rather than
trying to use the wrong tool to solve the
problem).

Reason 5: Fun

Programming in Python is fun.

Especially because:

e It is an elegant and simple language

* Most programs mean what you think they mean

o It is dynamic and interactive

o It can be used to build web applications (PS8, PS9)
o It is named after Monty Python’s Flying Circus

It was designed by someone named Guido.

Lecture 28: Implementing Interpreters 9

— -
il Computer Science |

- P
Lecture 28: Implementing Interpreters 10 i Comput‘e]r Scne{lce
g bt e

Python
¢ A universal programming language
— Everything you can compute in Scheme you can
compute in Python, and vice versa
e Imperative Language
— Designed to support a programming where most
of the work is done using assignment
statements: x = e
¢ Object-Oriented Language
— Every data thing is an object
— Built in support for classes, inheritance

Learning New Languages

o Syntax: Where the {, ;, $, etc. all go
— If you can understand a BNF grammar, this is easy

¢ Semantics: What does it mean
— Learning the evaluation rules
— Harder, but most programming languages have very
similar evaluation rules
¢ Style
— What are the idioms and customs of experienced
programmers in that language?
* Takes many years to learn

« Need it to be a “professional” Python programmer, but not to
make a useful program

Lecture 28: Implementing Interpreters 11

= -
m; T '1€1¢
fi Computer Science |

- .
Lecture 28: Implementing Interpreters 12 i Compuf‘eyr Sctegce

Python If

Instruction ::= if (Expression) :
Block

Evaluate Expression. If it evaluates
to true, evaluate the Biock.
It is similar to (if Expression (begin Statements))
Differences:
Indenting and new lines matter!

Changing the indentation changes meaning of code
What “true” means:

Scheme: anything that is not #f.
Python: anything that is not False, None, O,
and empty string or container

- .
Lecture 28: Implementing Interpreters 13 il Comppf‘eyr Sctegce

Ali G Problem

e Input: a list of 2 numbers with up to 4
digits each

e Output: the product of the 2 numbers

Is it computable?
Yes — a straightforward algorithm
solves it. Using elementary
multiplication techniques it is O(d%)

Can real computers solve it?

Lecture 28: Implementing Interpreters 15

il Computer S¢

hem

ST

Langusge Scheme Specid Windows Help

> (* 99999999999999999999999999999999999995
99 99 999999999999999999
9900599955399920999999999958
955599995999995.

9995599959999920999939999999999955993
9955599959999955599955
995599999999995599995999995599995999995
101010101010108

9555999959999955999955999959999959999955
9955599959999

018125212175444648031397731582466999999921691

K]

[0 Joesawime]_Joavems

Computability in Theory and
Practice

(Intellectual Computability
Discussion on TV Video)

- s
Lecture 28: Implementing Interpreters 14 il Compuf‘ey{“ ’Sbg\le%su
BEE
Fle Edt Vew Incet Fomat Took Daka Window Help [why cantt Excelmuliphal 7] & x
6 - f =PRODUCT(C1:C5)
A T B I = =
1 999999999 999999999 999999999
B % 9 %
B 9) 99
.| 9 %
B %
| 5| 9800999990199 970298999029701[96059600903940400]
7
&
[N shenr: /s ot , -
Ready A alig.scm - DrScheme I [m] |
Fle Edt Show Language Scheme Special Windows Help
:
= Sl Check Syt El b Break
P |‘_ ep”o\ ech ynax”‘ xecue”@ reaI
> (% 9995993935 95 399) =
9800999990199
» (¥ 9999593953 93 99 39)
970298999029701
> (% 9999535999 935 39 99 99]'
96059600903940399

Ali G was Right!

¢ Theory assumes ideal computers:
— Unlimited, perfect memory
— Unlimited (finite) time
e Real computers have:
— Limited memory, time, power outages, flaky
programming languages, etc.

— There are many computable problems we cannot
solve with real computer: the actual inputs do
matter (in practice, but not in theory!)

- .
Lecture 28: Implementing Interpreters 18 i Comppf‘eyr Sctegce

Implementing
Interpreters

Lecture 28: Implementing Interpreters 19

Inventing a Language

¢ Design the grammar
— What strings are in the language?
— Use BNF to describe all the strings in the
language
¢ Make up the evaluation rules

— Describe what everything the grammar can
produce means

¢ Build an evaluator

— A procedure that evaluates expressions in the
language

= -
filii Computer Science |

Lecture 28: Implementing Interpreters 20

= -
filii Computer Science |

Is this an exaggeration?

SICP, p. 360)

It is no exaggeration to regard this as the most
fundamental idea in programming:
The evaluator, which determines the
meaning of expressions in the
programming language, is just another
program.
To appreciate this point is to change our images of
ourselves as programmers. We come to see
ourselves as designers of languages, rather than
only users of languages designed by others.

Environmental Model of Evaluation

1. To evaluate a combination, evaluate all the
subexpressions and apply the value of the first
subexpression to the values of the other
subexpressions.

2. To apply a compound procedure to a set of
arguments, evaluate the body of the procedure
in @ new environment. To construct this
environment, make a new frame with an
environment pointer that is the environment of
the procedure that contains places with the

formal parameters bound to the arguments.

- P
Lecture 28: Implementing Interpreters 21 i Comput‘e]r Scne{;ce

- P
Lecture 28: Implementing Interpreters 22 i Comput‘e]r Scne{;ce

Eval and Apply
are defined in
terms of each

other.

Lecture 28: Implementing Interpreters 23

def meval(expr, env): Imp|ementing
if isPrimitive(expr):
return evalPrimitive(expr) meval
elif isConditional(expr):
return evalConditional(expr, env)
elif isLambda(expr):
return evalLambda(expr, env)
elif isDefinition(expr):
evalDefinition(expr, env)
elif isName(expr):
return evalName(expr, env)
elif isApplication(expr):
return evalApplication(expr, env)
else:
evalError ("Unknown expression type: " + str(expr))

= -
fi Computer Science |

Lecture 28: Implementing Interpreters 24

=
filis Computer S¢

Implementing
def mapply(proc, operands):

if (isPrimitiveProcedure(proc)): mapply
return proc(operands)
elif isinstance(proc, Procedure):
params = proc.getParams()
newenv = Environment(proc.getEnvironment())
if len(params) != len(operands):
evalError ("Parameter length mismatch: ...")
for i in range(0, len(params)):
newenv.addVariable(paramsl[i], operandsl[i])
return meval(proc.getBody(), newenv)
else:
evalError("Application of non-procedure: %s" % (proc))

Lecture 28: Implementing Interpreters 25

Charge

e Friday: Implementing the rest of the
interpreter: the evaluation rules,
environments, procedures

¢ Next week: changing the evaluation rules

* Don't wait any longer to start PS7

¢ The statement, "There will be a surprise
quiz someday this week” might still be
true

= -
filii Computer Science |

- .
Lecture 28: Implementing Interpreters 26 il Computﬁr Sctegce

