
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 3:
Rules of
Evaluation

2Lecture 3: Evaluation Rules

Menu

• Describing Languages

• Learning New Languages

• Evaluation Rules

My office hours are now scheduled:
Wednesdays, 1-2pm (right after class)
Thursdays, 3:30-4:30pm

If you can’t make them, send email to arrange
meetings at other times.

3Lecture 3: Evaluation Rules

ENIAC: Electronic Numerical Integrator and Computer

• Early WWII computer

– But not the world’s
first (PS4)

• Built to calculate
bombing tables

Memory size:
twenty 10 decimal digit accumulators = 664 bits

Apollo Guidance Computer (1969): 1 inch
You: 4.4 miles

ENIAC (1946): ½ mm

4Lecture 3: Evaluation Rules

Directions for Getting 6
1. Choose any regular accumulator (ie. Accumulator #9).
2. Direct the Initiating Pulse to terminal 5i.
3. The initiating pulse is produced by the initiating unit's Io terminal each

time the Eniac is started. This terminal is usually, by default, plugged into
Program Line 1-1 (described later). Simply connect a program cable from
Program Line 1-1 to terminal 5i on this Accumulator.

4. Set the Repeat Switch for Program Control 5 to 6.
5. Set the Operation Switch for Program Control 5 to .
6. Set the Clear-Correct switch to C.
7. Turn on and clear the Eniac.
8. Normally, when the Eniac is first started, a clearing process is begun. If

the Eniac had been previously started, or if there are random neons
illuminated in the accumulators, the ``Initial Clear'' button of the
Initiating device can be pressed.

9. Press the ``Initiating Pulse Switch'' that is located on the Initiating
device.

10.Stand back.

5Lecture 3: Evaluation Rules

• Mathematics PhD Yale, 1934

• Entered Navy, 1943

• First to program Mark I (first
“large” computer, 51 feet long)

• Wrote first compiler (1952) –
program for programming
computers

• Co-designer of COBOL (most
widely used programming
language until a few years ago)

Admiral Grace Hopper
(1906-1992)

“Nobody believed that
I had a running
compiler and nobody
would touch it. They
told me computers
could only do
arithmetic.”

6Lecture 3: Evaluation Rules

USS Hopper

Guest on David Letterman

“Dare and Do”

2

7Lecture 3: Evaluation Rules

Nanostick

• How far does light travel in 1 nanosecond?
> (define nanosecond (/ 1 (* 1000 1000 1000))) ;; 1 billionth of a s
> (define lightspeed 299792458) ; m / s
> (* lightspeed nanosecond)
149896229/500000000
> (exact->inexact (* lightspeed nanosecond))
0.299792458

= just under 1 foot

Dell machines in Small Hall have “1.8-GHz Pentium 4 CPU”

GHz = GigaHertz = 1 Billion times per second
They must finish a step before light travels 6.6 inches!

8Lecture 3: Evaluation Rules

Code written by
humans

Compiler

Code machine can run

Compiler translates
from code in a high-
level language to
machine code

DrScheme uses an interpreter. An interpreter is
like a compiler, except it runs quickly and quietly
on small bits of code at a time.

9Lecture 3: Evaluation Rules

John Backus

• Chemistry major at UVA
(entered 1943)

• Flunked out after second
semester

• Joined IBM as programmer
in 1950

• Developed Fortran, first
commercially successful
programming language and
compiler

10Lecture 3: Evaluation Rules

IBM 704 Fortran manual, 1956

11Lecture 3: Evaluation Rules

Describing Languages
• Fortran language was described using English

– Imprecise

– Verbose, lots to read

– Ad hoc

DO 10 I=1.10

Assigns 1.10 to the variable DO10I

DO 10 I=1,10

Loops for I = 1 to 10

(Often incorrectly blamed for loss of Mariner-I)

• Wanted a more precise way of describing a
language

12Lecture 3: Evaluation Rules

Backus Naur Form

symbol ::= replacement

We can replace symbol with replacement

nonterminal – symbol that appears on left side
of rule

terminals – symbol that never appears on the
left side of a rule

A ::= B means anywhere you have an
A, you can replace it with a B.

3

13Lecture 3: Evaluation Rules

Language Elements
When learning a foreign language, which
elements are hardest to learn?

• Primitives: lots of them, and hard to learn real meaning
• Means of Combination

– Complex, but, all natural languages have similar ones [Chomsky]
SOV (45% of all languages) Sentence ::= Subject Object Verb (Korean)

SVO (42%) Sentence ::= Subject Verb Object
VSO (9%) Sentence ::= Verb Subject Object (Welsh)

“Lladdodd y ddraig y dyn.” (Killed the dragon the man.)

OSV (<1%): Tobati (New Guinea)

Schemish: Expression ::= (Verb Object)

• Means of Abstraction: few of these, but tricky to learn differences
across languages

English: I, we

Tok Pisin (Papua New Guinea): mi (I), mitupela (he/she and I), mitripela
(both of them and I), mipela (all of them and I), yumitupela (you and I),
yumitripela (both of you and I), yumipela (all of you and I)

14Lecture 3: Evaluation Rules

48 pages total (includes
formal specification and
examples)

Means of
Abstraction

Means of
Combination

Primitives

Pages in Revised5 Report
on the Algorithmic
Language Scheme

15Lecture 3: Evaluation Rules

Definitions

Expressions

Program structure

Standard Procedures

Primitive expressions

Identifiers, numerals

48 pages total (includes
formal specification and
examples)

½Means of
Abstraction

2

2
Means of
Combination

18

2

1
Primitives

Pages in Revised5 Report
on the Algorithmic
Language Scheme

16Lecture 3: Evaluation Rules

Definitions

Expressions

Program structure

Standard Procedures

Primitive expressions

Identifiers, numerals

48 pages total (includes
formal specification and
examples)

½Means of
Abstraction

2

2
Means of
Combination

18

2

1
Primitives

Pages in C++ Language
Specification (1998)

Pages in Revised5 Report
on the Algorithmic
Language Scheme

17Lecture 3: Evaluation Rules

Declarations, Classes

Expressions, Statements

Program Structure

Standard Procedures

Primitive expressions

Identifiers, numerals

Definitions

Expressions

Program structure

Standard Procedures

Primitive expressions

Identifiers, numerals

776 pages total (includes no
formal specification or
examples)

48 pages total (includes
formal specification and
examples)

173½Means of
Abstraction

197

35

2

2
Means of
Combination

356

30

10

18

2

1
Primitives

Pages in C++ Language
Specification (1998)

Pages in Revised5 Report
on the Algorithmic
Language Scheme

C++ Core language issues list has 469 items!

18Lecture 3: Evaluation Rules

Pronouns

Grammar Rules

English Grammar
for Dummies Book

Morphemes

Words in Oxford
English Dictionary

Definitions

Expressions

Program structure

Standard Procedures

Primitive expressions

Identifiers, numerals

48 pages total (includes
formal specification and
examples)

~20½Means of
Abstraction

100s (?)

384 pages

2

2
Means of
Combination

?

500,000

18

2

1

Primitives

English
Pages in Revised5 Report
on the Algorithmic
Language Scheme

4

Evaluation

20Lecture 3: Evaluation Rules

Expressions and Values

• (Almost) every expression has a value
– Have you seen any expressions that don’t
have values?

• When an expression with a value is
evaluated, its value is produced

21Lecture 3: Evaluation Rules

Primitive Expressions

Expression ::= PrimitiveExpression

PrimitiveExpression ::= Number

PrimitiveExpression ::= #t | #f

PrimitiveExpression ::= Primitive Procedure

22Lecture 3: Evaluation Rules

Evaluation Rule 1: Primitives

If the expression is a primitive,
it evaluates to its pre-defined
value.

> 2
2
> #t
#t
> +
#<primitive:+>

23Lecture 3: Evaluation Rules

Name Expressions

Expression ::= NameExpression

NameExpression ::= Name

24Lecture 3: Evaluation Rules

Evaluation Rule 2: Names

If the expression is a name, it
evaluates to the value associated with
that name.

> (define two 2)
> two
2

5

25Lecture 3: Evaluation Rules

Application Expressions

Expression ::= Application Expression

ApplicationExpression

::= (Expression MoreExpressions)

MoreExpressions ::= ε

MoreExpressions

::= Expression MoreExpressions

26Lecture 3: Evaluation Rules

Evaluation Rule 3: Application

3. If the expression is an application:

a) Evaluate all the subexpressions (in any
order)

b) Apply the value of the first subexpression to
the values of all the other subexpressions.

(Expression0 Expression1 Expression2 …)

27Lecture 3: Evaluation Rules

Rules for Application

1. Primitives. If the procedure to apply is
a primitive, just do it.

2. Constructed Procedures. If the
procedure is a constructed procedure,
evaluate the body of the procedure
with each formal parameter replaced by
the corresponding actual argument
expression value.

28Lecture 3: Evaluation Rules

EvalEval

ApplyApply

Eval and Apply
are defined in
terms of each
other.

Without Eval,
there would be
no Apply,
Without Apply
there would be
no Eval!

29Lecture 3: Evaluation Rules

Making Procedures

lambda means “make a procedure”

Expression ::= ProcedureExpression

ProcedureExpression ::=

(lambda (Parameters) Expression)

Parameters ::= ε

Parameters ::= Name Parameters

30Lecture 3: Evaluation Rules

Evaluation Rule 4: Lambda

4. Lambda expressions evaluate to a
procedure that takes the given
parameters and has the expression as
its body.

6

31Lecture 3: Evaluation Rules

Lambda Example: Tautology Function

(lambda
()
#t)

> ((lambda () #t) 150)
#<procedure>: expects no arguments, given 1: 150
> ((lambda () #t))
#t
> ((lambda (x) x) 150)
150

make a procedure
with no parameters
with body #t

32Lecture 3: Evaluation Rules

Evaluation Rule 5: If
(if ExpressionPredicate
ExpressionConsequent
ExpressionAlternate)

To evaluate an if expression:

(a) Evaluate ExpressionPredicate.

(b) If it evaluates to #f, the value of the if
expression is the value of ExpressionAlternate.
Otherwise, the value of the if expression is the
value of ExpressionConsequent.

33Lecture 3: Evaluation Rules

Now You Know All of Scheme!

• Once you understand Eval and Apply, you
can understand all Scheme programs!

• Except:
– There are a few more special forms (like if)

– We have not define the evaluation rules
precisely enough to unambiguously
understand all programs (e.g., what does
“value associated with a name” mean?)

34Lecture 3: Evaluation Rules

Charge

• Problem Set 2: out today (we’ll talk
about it next class)

• Reading: Chapters 4 and 5

