Lecture 37:
A Universal
Computer

PS8 returned at your project
design review meetings

Remember to email your
project descriptions before

midnight tonight
CS150: Computer Science R
University of Virginia David Evans
Computer Science http://www.cs.virginia.edu/evans

Turing Machine
=#|1|o|1|1|o|1|1|1|o|1|1|o|1|1|1|#=

Input: #
Start Write: # Input: 1
\ Move: « Write: 0
Move: «
Input: O
Write: #

Input: 1 Input: O :
Write: 1 Write: O
Move: — Move: —
Lecture 37: Universal Computing Machines 3 i'il‘! Compﬂutg\r“ §.ﬁ\i§&f§”

Turing Machine: FSM + Infinite Tape

o Start:
— FSM in Start State
— Input on Infinite Tape
— Tape head at start of input
o Step:
— Read current input symbol from tape

— Follow transition rule from current state on input
* Write symbol on tape
* Move L or R one square
* Update FSM state

* Finish: Transition to halt state

Lecture 37: Universal Computing Machines 2

= -
m; T '1€1¢
fi Computer Science |

Adding

¢ Input on tape:

LAy engtmmy o
— Number represented in binary
e QOutput:

where r=n+m

Can we implement addition with a TM?

Adder TM (Start)

0,0, R Input: +

Write: +|:{>

Move: L

2: look
for digit

0 %R N
g3
adding

= -
m; T '1€1¢
fi Computer Science |

Lecture 37: Universal Computing Machines 5

- y
Lecture 37: Universal Computing Machines 4 s Compﬂutg\r“ }Swﬁ\lg{:l‘fs‘
0,0,R
+ L X, X, L
1, 1,R
Start 2: look
2 for digit
4.
0,0, R adding
to1
- .
Lecture 37: Universal Computing Machines 6 il Computer Science |

- .
Lecture 37: Universal Computing Machines 7 fiis Computer Science

o 1 UNIVERSITY o VIRGINA

Turing Machine

z]z]z]z]z]z]z]z] 2] 2]z 22z 2] 2]z [z] 2] 2]

TuringMachine ::= < Alphabet, Tape, FSM >

C=] Alphabet ::= { Symbol*}
& G| rape= < Lenside, current, Rightside >
- OneSquare ::= Symbol | #
=]
Current ::= OneSquare
i LeftSide ::= [Square*]
Finite State Machine | RightSide ::= [Square*]

Everything to left of LeftSideis #.
Everything to right of RightSideis #.

- P
] Comther Science

Lecture 37: Universal Computing Machines 9 ¢ 1
s Univeisiry o Vi

o k]
1, %R

go to end of answer

digits, V\w/.

20: return for
next digits, no
carry

21: return for
next digits,
carry 1

- 5
Computer Science

o NIERSITY o ViRGiNi

Lecture 37: Universal Computing Machines 8

Describing Finite State Machines

TuringMachine ::= < Alphabet, Tape, FSM >
FSM ::= < States, TransitionRules, InitialState, HaltingStates >
States ::= { StateName*}
InitialState ::= StateName must be element of States
HaltingStates ::= { StateName* }all must be elements of Stateq
TransitionRules ::= { TransitionRule*}
TransitionRule ::=

< StateName, ;; Current State Transition Rule is a procedure:

OneSquare, ;; Current square Inputs: StateName, OneSquare

StateName, :: Next State Outputs: Stfate/\/‘ame, OneSquare,
. Direction
OneSquare, ;; Write on tape
Direction > ;; Move tape
Direction ::= L, R, #
- y
Lecture 37: Universal Computing Machines 10 s Comther Science

s UNVERSITY o VIRGINIA

) Example
Start™ > Turlng
Machine

[AN Gnar > 17071

TuringMachine ::= < Alphabet, Tape, FSM >
FSM ::= < States, TransitionRules, Initia/State, HaltingStates >
Alphabet ::={ (,), X }
States ::= { 1, 2, HALT }
InitialState ::= 1
HaltingStates ::= { HALT }
TransitionRules ::= { < 1,),2,X,L>,
<1, # HALT, 1, # >,
<1,-), # R>,
<2,(1,X,R>,
<2, #,HALT, 0, # >,
<2, =), #,L>}

Enumerating Turing Machines

* Now that we've decided how to describe
Turing Machines, we can number them

e TM-5023582376 balancing parens

e TM-57239683 even number of 1s

o TM-bosmsssmmssemsss | = Photomosaic Program

0 TM- s | = WINAOWSXP

Not the real
numbers — they
would be much

bigger!

- .
Lecture 37: Universal Computing Machines 11 i Comppf‘eyr Science

NIVERSITY o ViRGiN

- .
Lecture 37: Universal Computing Machines 12 i Comppf‘eyr Science

NIVERSITY o ViRGiN

Universal Turing Machine

P
Number~—| Universal | ©Sutput

) Tape
of T Turing [for running

I : T™-P
Input Machine in tape 7
Tape

also, just a number!

Can we make a Universal Turing Machine?

Lecture 37: Universal Computing Machines

= -
13 fi Computer Science |

Manchester llluminated Universal Turing Machine, #9
from http://www.verostko.com/manchester/manchester.html

Lecture 37: Universal Computing Machines 15

— -
il Computer Science |

Universal Language

¢ Is Scheme/Charme/Python as powerful as
a Universal Turing Machine?

|Yes: show we can simulate a UTM with a Scheme program|

¢ Is a Universal Turing Machine as powerful
as Scheme/Charme/Python?

| Can we simulate a Scheme interpreter with a TM?|

-
Lecture 37: Universal Computing Machines 17 i Compuf‘eyr S

Yes!

¢ People have designed Universal Turing
Machines with
—4 symbols, 7 states (Marvin Minsky)
—4 symbols, 5 states
—2 symbols, 22 states
— 18 symbols, 2 states
— 2 states, 5 symbols (Stephen Wolfram)

¢ No one knows what the smallest possible
UTM is

Lecture 37: Universal Computing Machines

= -
14 fi Computer Science |

Church-Turing Thesis

« Any mechanical computation can be
performed by a Turing Machine

» There is a TM-n corresponding to every
computable problem

¢ We can any “normal” (classical mechanics)
computer with a TM

—If a problem is in polynomial time on a TM, it is
in polynomial time on an iMac, Cray, Palm, etc.

— But maybe not a quantum computer! (later
class)

Lecture 37: Universal Computing Machines 16

— -
i Computer Science |

Complexity in Scheme
® SpeCiaI FOI’mS If we have lazy evaluation and
—if, cond, define, etc. don't care about abstraction,
. 4 n 4 4 we don't need these.
e Primitives
— Numbers (infinitely many) .
— Booleans: #t, #f [Hard to get rid of? |
- Functions (+, -, and, or, etc.)
¢ Evaluation Complexity
— Environments (more than 2 of our eval code)

|Can we get rid of all this and still have a useful language? |

- .
Lecture 37: Universal Computing Machines 18 i Compuf‘eyr Sctegce

A-calculus
Alonzo Church, 1940

(LISP was developed from A-calculus,
not the other way round.)

term = variable
| term term
| (term)
| A variable . term

Lecture 37: Universal Computing Machines 19

= -
filii Computer Science |

Real Definition

e A calculus is just a bunch of rules for
manipulating symbols.

¢ People can give meaning to those
symbols, but that’s not part of the
calculus.

« Differential calculus is a bunch of rules
for manipulating symbols. There is an
interpretation of those symbols
corresponds with physics, slopes, etc.

- P
Lecture 37: Universal Computing Machines 21 i Comput‘e]r Scne{;ce

Why?

* Once we have precise and formal rules for
manipulating symbols, we can use it to
reason with.

 Since we can interpret the symbols as
representing computations, we can use it
to reason about programs.

What is Calculus?

e In High School:
d/dx x" = nx"! [Power Rule]
d/dx (f + g) = d/dx f + d/dx g [Sum Rule]

Calculus is a branch of mathematics that
deals with limits and the differentiation
and integration of functions of one or
more variables...

Lecture 37: Universal Computing Machines 20

= -
filii Computer Science |

Lambda Calculus

¢ Rules for manipulating strings of
symbols in the language:
term = variable
| term term
| (term)
| A variable . term
e Humans can give meaning to those
symbols in a way that corresponds to
computations.

- P
Lecture 37: Universal Computing Machines 22 i Comput‘e]r Scne{;ce

Evaluation Rules

a-reduction (renaming)
Ay. M =, . (M [ya v])
where v does not occur in M.

p-reduction (substitution)
(Ax. M)N = M [xo N]

- .
Lecture 37: Universal Computing Machines 23 i Comput‘e’r Sctegce

- .
Lecture 37: Universal Computing Machines 24 i Comput‘e’r Sctegce

Charge

¢ Project Descriptions due before midnight
tonight

e Exam 2 due Friday at 12:02 pm
(beginning of class)

e Friday’s class: student talks about
research and industry

- .
Lecture 37: Universal Computing Machines 25 il Compuf‘e’r Sctegce

