
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science
University of Virginia
Computer Science

Lecture 9:
Recursing Recursively

Richard Feynman’s Van

(parked outside the theater
where QED is playing)

Alan Alda playing Richard Feynman in QED

2Lecture 9: Recursing Recursively

Menu

•Recursive Procedures

•GEB Chapter V

–Fibonacci

–RTNs

–Music and Recursion

3Lecture 9: Recursing Recursively

Example
Define a procedure find-closest-number that
takes two inputs, a goal number, and a list
of numbers, and produces the number in
the list numbers list that is closest to goal:

> (find-closest-number 150 (list 101 110 120 157 340 588))
157
> (find-closest-number 12 (list 1 11 21))
11
> (find-closest-number 12 (list 95))
95

4Lecture 9: Recursing Recursively

Find Closest Number

Be optimistic!

Assume you can define:

(find-closest-number goal numbers)

that finds the closest number to goal from
the list of numbers.

What if there is one more number?

Can you write a function that finds the
closest number to match from new-
number and numbers?

5Lecture 9: Recursing Recursively

Finding the Closest

Strategy:

If the first number is closer than the
closest number of the rest of the
numbers, use the first number.

Otherwise, use the closet number of the
rest of the numbers.

6Lecture 9: Recursing Recursively

Optimistic Function

(define (find-closest goal numbers)
(if (< (abs (- goal (car numbers)))

(abs (- goal
(find-closest-number
goal (cdr numbers)))))

(car numbers)
(find-closest-number
goal (cdr numbers))))

2

7Lecture 9: Recursing Recursively

Defining Recursive Procedures

2. Think of the simplest version of the
problem, something you can already
solve.

If there is only one number, that is the
best match.

8Lecture 9: Recursing Recursively

(define (find-closest-number goal numbers)
(if (= 1 (length numbers))

(car numbers)
(if (< (abs (- goal (car numbers)))

(abs (- goal
(find-closest-number
goal (cdr numbers)))))

(car numbers)
(find-closest-number goal (cdr numbers))))

S
a
m

e
 a

s
b
e
fo

re

The Base Case

9Lecture 9: Recursing Recursively

Testing

> (find-closest-number 150
(list 101 110 120 157 340 588))

157
> (find-closest-number 0 (list 1))
1
> (find-closest-number 0 (list))
first: expects argument of type <non-empty list>; given ()

(define (find-closest-number goal numbers)

(if (= 1 (length numbers))

(car numbers)
(if (< (abs (- goal (car numbers)))

(abs (- goal
(find-closest-number

goal (cdr numbers)))))
(car numbers)

(find-closest-number goal (cdr numbers))))

10Lecture 9: Recursing Recursively

Generalizing find-closest-number

• How would we implement

find-closest-number-without-going-over?

• What about find-closest-word?

• ...

The “closeness” metric should be a procedure parameter

11Lecture 9: Recursing Recursively

find-closest

(define (find-closest goal lst closeness)
(if (= 1 (length lst))

(car lst)
(if (< (closeness goal (car lst))

(closeness goal
(find-closest goal (cdr lst) closeness)))

(car lst)
(find-closest goal (cdr lst) closeness)))

How can we implement find-closest number with find-closest?

12Lecture 9: Recursing Recursively

find-closest-number

(define (find-closest-number goal numbers)
(find-closest goal numbers

(lambda (a b) (abs (- a b)))))

(define (find-closest-below goal numbers)
(find-closest goal numbers

(lambda (a b)
(if (>= a b) (- a b) 99999))))

3

13Lecture 9: Recursing Recursively

find-closest

(define (find-closest goal lst closeness)
(if (= 1 (length lst))

(car lst)
(if (< (closeness goal (car lst))

(closeness goal
(find-closest goal (cdr lst) closeness)))

(car lst)
(find-closest goal (cdr lst) closeness)))

How can we avoid needing to evaluate find-closest twice?

14Lecture 9: Recursing Recursively

find-closest

(define (find-closest goal lst closeness)
(if (= 1 (length lst))

(car lst)
(pick-closest closeness goal (car lst)

(find-closest goal (cdr lst) closeness))))

(define (pick-closest closeness goal num1 num2)
(if (< (closeness goal num1)

(closeness goal num2))
num1
num2))

15Lecture 9: Recursing Recursively

Seen Anything Like This?
(define (find-best-match sample tiles color-comparator)

(if (= (length tiles) 1)
(car tiles)
(pick-better-match

sample
(car tiles)
(find-best-match

sample
(cdr tiles)
color-comparator)

color-comparator))))

(define (pick-better-match

sample tile1 tile2

color-comparator)
(if (color-comparator sample

(tile-color tile1) (tile-color tile2))
tile1

tile2))

16Lecture 9: Recursing Recursively

GEB Chapter V
You could spend the rest of your life just studying
things in this chapter (25 pages)!
– Music Harmony
– Stacks and Recursion
– Theology
– Language Structure
– Number Sequences
– Chaos
– Fractals (PS3 out today)
– Quantum Electrodynamics (later lecture)
– DNA (later lecture)
– Sameness-in-differentness
– Game-playing algorithms (later lecture)

17Lecture 9: Recursing Recursively

Fibonacci’s Problem
Filius Bonacci, 1202 in Pisa:

Suppose a newly-born pair of rabbits, one male, one
female, are put in a field. Rabbits mate at the age of one
month so that at the end of its second month a female can
produce another pair of rabbits.

Suppose that our rabbits never die and that the female
always produces one new pair (one male, one female)
every month from the second month on.

How many pairs will there be in one year?

18Lecture 9: Recursing Recursively

Rabbits

From http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

4

19Lecture 9: Recursing Recursively

Fibonacci Numbers
GEB p. 136:

These numbers are best defined recursively

by the pair of formulas

FIBO (n) = FIBO (n – 1) + FIBO (n – 2)

for n > 2

FIBO (1) = FIBO (2) = 1

Can we turn this into a Scheme procedure?

20Lecture 9: Recursing Recursively

Defining FIBO

1. Be optimistic - assume
you can solve it, if you
could, how would you
solve a bigger problem.

2. Think of the simplest
version of the problem,
something you can
already solve.

3. Combine them to solve
the problem.

These numbers are best

defined recursively by

the pair of formulas

FIBO (n) =

FIBO (n – 1)

+ FIBO (n – 2)

for n > 2

FIBO (1) = FIBO (2) = 1

21Lecture 9: Recursing Recursively

Defining fibo

;;; (fibo n) evaluates to the nth Fibonacci

;;; number

(define (fibo n)

(if (or (= n 1) (= n 2))

1 ;;; base case

(+ (fibo (- n 1))

(fibo (- n 2)))))

FIBO (1) = FIBO (2) = 1

FIBO (n) =

FIBO (n – 1)

+ FIBO (n – 2)

for n > 2

22Lecture 9: Recursing Recursively

Fibo Results
> (fibo 2)
1
> (fibo 3)
2
> (fibo 4)
3
> (fibo 10)
55
> (fibo 60)
Still working after 4 hours…

Why can’t our 4Mx
Apollo Guidance
Computer figure
out how many
rabbits there will
be in 5 years?

To be continued...

23Lecture 9: Recursing Recursively

Recursive Transition Networks

ARTICLE ADJECTIVE NOUN endbegin

ORNATE NOUN

Can we describe this using Backus Naur Form?

24Lecture 9: Recursing Recursively

Recursive Transition Networks

ARTICLE ADJECTIVE NOUN endbegin

ORNATE NOUN

ORNATE NOUN ::= NOUN

5

25Lecture 9: Recursing Recursively

Recursive Transition Networks

ARTICLE ADJECTIVE NOUN endbegin

ORNATE NOUN

ORNATE NOUN ::= NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE NOUN

26Lecture 9: Recursing Recursively

Recursive Transition Networks

ARTICLE ADJECTIVE NOUN endbegin

ORNATE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE ADJECTIVE NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE ADJECTIVE ADJECTIVE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE ADJECTIVE ADJECTIVE ADJECTIVE NOUN

27Lecture 9: Recursing Recursively

Recursive Transition Networks

ARTICLE ADJECTIVE NOUN endbegin

ORNATE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVES NOUN

ADJECTIVES ::= ADJECTIVE ADJECTIVES

ADJECTIVES ::=

28Lecture 9: Recursing Recursively

Recursive Transition Networks

ARTICLE ADJECTIVE NOUN endbegin

ORNATE NOUN

ORNATE NOUN ::= OPTARTICLE ADJECTIVES NOUN

ADJECTIVES ::= ADJECTIVE ADJECTIVES

ADJECTIVES ::= ε

OPTARTICLE ::= ARTICLE

OPTARTICLE ::= ε
Which notation is better?

29Lecture 9: Recursing Recursively

Music Harmony

Kleines Harmonisches Labyrinth

(Little Harmonic Labyrinth)

30Lecture 9: Recursing Recursively

Hey Jude

John Lennon and Paul McCartney, 1968

6

31Lecture 9: Recursing Recursively

Hey Jude

Tonic: F = 1

V: C = 3/2 * F

Tonic: F

IV: Bb = 4/3 * F

Pu
sh

 F
ift
h

Pu
sh
 F
ou

rt
hPop

Tonic: F

Pop

V: C = 3/2 * F

Tonic: F

Pu
sh

 F
ift
h P

o
p

Tonic: Hey Jude, don’t make it

V: bad. take a sad song and make it

Tonic: better Re-

IV: member to let her into your

Tonic: heart, then you can

V: start to make it bet-

Tonic: -ter.

32Lecture 9: Recursing Recursively

Tonic: F = 1

V: C = 3/2 * F

Tonic: F

IV: Bb = 4/3 * F

Pu
sh

 F
ift
h

Pu
sh

 F
ou

rt
h

Pop

Tonic: F

Pop

V: C = 3/2 * F

Tonic: F

Pu
sh

 F
ift
h

P
opVerse ::=

Bridge ::=

Tonic: F = 1

V+V: Gm = 3/2 * 3/2 * F

Pu
sh
 F
ou

rth

V: C = 3/2 * F

Tonic: F

Pop

IV: Bb = 4/3 * F

And Anytime you feel the

Pain, Hey Jude re-

-frain, don’t’ carry the

world up-on you shoul-

ders.

HeyJude ::= Verse VBBD VBBD Verse Verse Better Coda
VBBD ::= Verse Bridge Bridge Dadada (ends on C)
Coda ::= F Eb Bb F Coda

33Lecture 9: Recursing Recursively

Music

• Almost All Music Is Like This

– Pushes and pops the listener’s stack, but
doesn’t go too far away from it

– Repeats similar patterns in structured way

– Keeps coming back to Tonic, and Ends on the
Tonic

• Any famous Beatles song that doesn’t end
on Tonic?

“A Day in the Life” (starts on G, ends on E)

34Lecture 9: Recursing Recursively

http://www.fractalwisdom.com/FractalWisdom/fractal.html

Charge

• Challenge:
Try to find a

“pop” song with
a 3-level deep

harmonic stack

• PS3: due in

one week

Be optimistic!

You know

everything you

need to finish it
now, and it is

longer than
ps2, so get

started now!

