Lecture 9:
Recursing Recursivel

e

4 Richard Feynman’s Van
(parked outside the theater

by €S150: Computer Science .
KT wmiversity of Virginia David Evans

o Computer Science http://www.cs.virginia.edu/evans

Menu

e Recursive Procedures
¢ GEB Chapter V
—Fibonacci
—RTNs
—Music and Recursion

Lecture 9: Recursing Recursively 2

= -
m; T '1€1¢
fi Computer Science |

Example

Define a procedure find-closest-number that
takes two inputs, a goal number, and a list
of numbers, and produces the number in
the list numbers list that is closest to goal:
> (find-closest-number 150 (list 101 110 120 157 340 588))

157
> (find-closest-number 12 (list 1 11 21))

Find Closest Number

Be optimistic!

Assume you can define:
(find-closest-number goal humbers)
that finds the closest number to goal from
the list of numbers.

What if there is one more number?
Can you write a function that finds the
closest number to match from new-
number and numbers?

- P
Lecture 9: Recursing Recursively 4 i Computg.r Scne{lce
g i DRy Vs

11
> (find-closest-number 12 (list 95))
95
Lecture 9: Recursing Recursively 3 !TET! CO‘“P}‘,FS}'&E;?{}ES‘
Finding the Closest
Strategy:

If the first number is closer than the
closest number of the rest of the
numbers, use the first number.

Otherwise, use the closet number of the
rest of the numbers.

- .
Lecture 9: Recursing Recursively 5 i Compuf‘eyr Scte{llce

Optimistic Function

(define (find-closest goal numbers)
(if (< (abs (- goal (car numbers)))
(abs (- goal
(find-closest-number
goal (cdr numbers)))))
(car numbers)
(find-closest-number
goal (cdr numbers))))

- .
Lecture 9: Recursing Recursively 6 i Compuf‘eyr Scte{llce

Defining Recursive Procedures

2. Think of the simplest version of the
problem, something you can already
solve.

If there is only one number, that is the
best match.

Lecture 9: Recursing Recursively 7

= -
m; T '1€1¢
fi Computer Science |

(define (find-closest-number goal numbers)
(if (= 1 (length numbers))
(car numbers)
(if (< (abs (- goal (car numbers)))
(abs (- goal
(find-closest-number
goal (cdr numbers)))))

1 (car numbers)
TeStI ng (find-closest-number goal (cdr numbers))))

> (find-closest-number 150
(list 101 110 120 157 340 588))
157
> (find-closest-number 0 (list 1))
1
> (find-closest-number 0 (list))
first: expects argument of type <non-empty list>; given ()

The Base Case

(define (find-closest-number goal numbers)
(if (= 1 (length numbers))
(car numbers)
(if (< (abs (- goal (car numbers)))

8 (abs (- goal
» (find-closest-number
g goal (cdr numbers)))))
@ (car numbers)
(find-closest-number goal (cdr numbers))))
Lecture 9: Recursing Recursively 8 !TEE Comp%&\rﬂ }S&iwg%\

Generalizing find-closest-number

* How would we implement
find-closest-number-without-going-over?
* What about find-closest-word?

The “closeness” metric should be a procedure parameter

- P
Lecture 9: Recursing Recursively 9 i Computgr Scne{lce
g priiipgioed)

- P
Lecture 9: Recursing Recursively 10 i Computgr Scne{lce
g priiipgioed)

find-closest

(define (find-closest goal Ist closeness)
(if (= 1 (length Ist))
(car Ist)
(if (< (closeness goal (car Ist))
(closeness goal
(find-closest goal (cdr Ist) closeness)))

(car Ist)
(find-closest goal (cdr Ist) closeness)))

| How can we implement find-closest number with ﬁnd-closest?l

find-closest-number

(define (find-closest-number goal numbers)
(find-closest goal numbers
(lambda (a b) (abs (- a b)))))

(define (find-closest-below goal numbers)
(find-closest goal numbers
(lambda (a b)
(if (>=a b) (- a b) 99999))))

Lecture 9: Recursing Recursively 11

=
fili Computer S

- .
Lecture 9: Recursing Recursively 12 i Compuf‘eyr SCIE{’lCe

find-closest

(define (find-closest goal Ist closeness)
(if (= 1 (length Ist))
(car Ist)
(if (< (closeness goal (car Ist))
(closeness goal
(find-closest goal (cdr Ist) closeness)))

(car Ist)
(find-closest goal (cdr Ist) closeness)))

| How can we avoid needing to evaluate find-closest twice?l

find-closest

(define (find-closest goal Ist closeness)
(if (= 1 (length Ist))
(car Ist)
(pick-closest closeness goal (car Ist)
(find-closest goal (cdr Ist) closeness))))

(define (pick-closest closeness goal num1 num2)
(if (< (closeness goal num1)
(closeness goal numz2))
numl
numz))

- .
Lecture 9: Recursing Recursively 13 il Compuf‘eyr SCIE{’lCe

- .
Lecture 9: Recursing Recursively 14 il Compuf‘eyr SCIE{’lCe

Seen Anything Like This?

(define (find-best-match sample tiles color-comparator)
(if (= (length tiles) 1)

(car tiles)
(pick-better-match
sample
(car tiles)
(find-best-match (define (pick-better-match
sample sample tilel tile2
(cdr tiles) color-comparator)
color-comparator) (if (fﬁlor-c?mlg_?r?50(rt _Tamplle de2))
lle-color tile Ile-color tile.
color-comparator)))) et
tile2))

GEB Chapter V

You could spend the rest of your life just studying
things in this chapter (25 pages)!

— Music Harmony

— Stacks and Recursion

— Theology

- Language Structure

— Number Sequences

— Chaos

— Fractals (PS3 out today)

— Quantum Electrodynamics (later lecture)
— DNA (later lecture)

— Sameness-in-differentness

— Game-playing algorithms (later lecture)

Lecture 9: Recursing Recursively 15

— -
il Computer Science |

- P
Lecture 9: Recursing Recursively 16 i Computg.r Science
g priiipgioed)

Fibonacci’s Problem
Filius Bonacci, 1202 in Pisa:

Suppose a newly-born pair of rabbits, one male, one
female, are put in a field. Rabbits mate at the age of one
month so that at the end of its second month a female can
produce another pair of rabbits.

Suppose that our rabbits never die and that the female
always produces one new pair (one male, one female)
every month from the second month on.

How many pairs will there be in one year?

Rabbits

e

&) 1

8“ :

88 &y) 3 ;
88 8I3\88 82 L8 -

From http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

Lecture 9: Recursing Recursively 17

= -
m; T '1€1¢
fi Computer Science |

- .
Lecture 9: Recursing Recursively 18 i Compuf‘eyr SCIE{’lCe

Fibonacci Numbers
GEB p. 136:
These numbers are best defined recursively
by the pair of formulas
FIBO (n) =FIBO (n-1) + FIBO (n -2)
forn>2
FIBO (1) =FIBO (2) =1

Can we turn this into a Scheme procedure?

1.

Defining

Be optimistic - assume
you can solve it, if you
could, how would you
solve a bigger problem.
Think of the simplest
version of the problem,
something you can
already solve.

FIBO

These numbers are best
defined recursively by
the pair of formulas
FIBO (n) =
FIBO (n-1)
+ FIBO (n-2)
forn>?2

- .
Lecture 9: Recursing Recursively 19 il Compuf‘eyr Sctegce

Defining fibo

;3 (fibo n) evaluates to the nth Fibonacci
;5 number
(define (fibo n)

(if (or(=n1)(=n2))

FIBO (1) = FIBO (2) = |

1;;; base case FIBO (n) =
+ (fibo (-n1 FIBO (n - 1)
(+ (fibo () +FIBO (n-2)

(fibo (- n 2)))))

forn>2

3. Combine them to solve |FIBO (1) = FIBO (2) = 1
the problem.
T e il il Computer Science
Fibo Results
> (fibo 2)
1 Why can’t our 4Mx
; (fibo 3) Apollo Guidance
] Computer figure
; (fibo) out how many
> (fibo 10) rab_bits there will
55 be in 5 years?
> (fibo 60)

Still working after 4 hours...

To be continued...

- P
Lecture 9: Recursing Recursively 21 i Comput‘e]r Scne{lce
g bt e

Lecture 9: Recursing Recursively 22

— -
i Computer Science |

Recursive Transition Networks

ORNATE NOUN
<D, |Amww (9

Can we describe this using Backus Naur Form?

P
@ [ArTICLE]

Recursive Transition Networks

ORNATE NOUN

1\.
{ ADJEClIVEwUN |——»

ORNATE NOUN ::= NOUN

- .
Lecture 9: Recursing Recursively 23 F] Compuf‘eyr Sctegce

Lecture 9: Recursing Recursively 24

= -
m; T '1€1¢
fi Computer Science |

Recursive Transition Networks

ORNATE NOUN

(tegin) [ARTIcLE | | ADJEC&b——'l NOUN |——*.

ORNATE NOUN ::= NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE NOUN

Lecture 9: Recursing Recursively 25

= -
m; T '1€1¢
fi Computer Science |

Recursive Transition Networks

ORNATE NOUN

| ARTICLE |——] ADJEC:\flr‘l NOUN }—'.

ORNATE NOUN .= ARTICLE ADJECTIVES NOUN

ADJECTIVES ::= ADJECTIVE ADJECTIVES
ADJECTIVES =
Lecture 9: Recursing Recursively 27

— -
il Computer Science |

Music Harmony

Kleines Harmonisches Labyrinth
(Little Harmonic Labyrinth)

Lecture 9: Recursing Recursively 29

= ‘
T 1€
iy Computer Science |

Recursive Transition Networks

ORNATE NOUN

@ [ArTICLE] | ADJECLI\/E|)—~| NOUN |——*.

ORNATE NOUN ::= ARTICLE ADJECTIVE NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVE ADJECTIVE ADJECTIVE NOUN
ORNATE NOUN ::= ARTICLE ADIECTIVE ADJECTIVE ADIECTIVE ADJECTIVE NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE ADIECTIVE ADIECTIVE ADIECTIVE ADJECTIVE NOUN

Lecture 9: Recursing Recursively 26

= -
m; T '1€1¢
fi Computer Science |

Recursive Transition Networks

ORNATE NOUN

| ARTICLE |——] ADJEC:\flr‘l NOUN }—'.
- =) =

ORNATE NOUN .= OPTARTICLE ADJECTIVES NOUN

ADJECTIVES ::= ADJECTIVE ADJECTIVES
ADJECTIVES =€

OPTARTICLE ~ ::= ARTICLE

OPTARTICLE ~ :i=c¢

Which notation is better?

Lecture 9: Recursing Recursively 28

— -
i Computer Science |

Hey Jude

John Lennon and Paul McCartney, 1968

- .
Lecture 9: Recursing Recursively 30 i Comppf‘eyr Sctegce

Hey Jude

V:C=3/2%F V:C=3/2%F
IV: Bb = 4/3 * F
© N S
& % S & 3
S N) °
X S X Y

|Tonic: F | |Tonic: F | | Tonic: F|

Tonic: Hey Jude, don't make it
V: bad. take a sad song and make it
Tonic: better Re-
IV: member to let her into your
Tonic: heart, then you can
V: start to make it bet-
Tonic: -ter.

V:iC=3/2*F V:iC=3/2*F

Verse::=
Tonic: F 'm‘
-frain, dont’ carry the
vic=32*F world up-on you shoul-
Bridge ::= 1V Bb = 4/3 * F

Pain, Hey Jude re- %

And Anytime you feel the ders.

HeyJude ::= Verse VBBD VBBD Verse Verse Better Coda
VBBD ::= Verse Bridge Bridge Dadada (ends on C)
Coda ::= F Eb Bb F Coda

- 5
il Computer Science

NIVERSITY & VIRGING

Lecture 9: Recursing Recursively 31

- 5
i Computer Science
] e Chvamit o i

Lecture 9: Recursing Recursively 32

Music

o Almost All Music Is Like This

—Pushes and pops the listener’s stack, but
doesn't go too far away from it

— Repeats similar patterns in structured way
— Keeps coming back to Tonic, and Ends on the

Charge

¢ Challenge:
Try to find a
“pop” song with
a 3-level deep
harmonic stack

¢ PS3: due in
one week

Be optimistic!

You know
everything you
need to finish it
now, and it is

Tonic
+ Any famous Beatles song that doesn't end
on Tonic?
“A Day in the Life” (starts on G, ends on E)
Lecture 9: Recursing Recursively 33 7] Compgter Science

s UNVERSITY o VIRGINIA

longer than . .
ps2, so get http://www.fractalwisdom.com/FractalWisdom/fractal.html
started now!

- P
Lecture 9: Recursing Recursively 34 s Compgter Science

s UNVERSITY o VIRGINIA

