
1

cs205: engineering software
university of virginia fall 2006

Semantics
and

Specifying
Procedures

David Evans
www.cs.virginia.edu/cs205

2cs205: engineering software

Java Semantics

3cs205: engineering software

The Stack and Heap

String s = new String (“hello”);

s

“hello”

java.lang.String

Objects live on the heap
new creates an object on the heap

Local variables live on the stack
May point to objects on the heap

String is a type in the

Java API for
representing

sequences of
characters

4cs205: engineering software

String s = new String (“hello”);

s

“hello”

java.lang.String

String t = s;

t

5cs205: engineering software

String s = new String (“hello”);

s

“hello”

java.lang.String

String t = s;

t

s = new String (“goodbye”);

“goodbye”

java.lang.String

6cs205: engineering software

Primitive Types

• Not everything in Java is an Object

• Some types are primitive types

– boolean, byte, char, double, float, int,
long, short

• Values of primitive types are stored
directly on the stack

2

7cs205: engineering software

String s = new String
(“hello”);

s

“hello”

java.lang.String

String t = s;

t

int i = 205;

i 205

int j = i;

j 205
How can we see the
difference between
primitive types and objects?

8cs205: engineering software

Equality

x == y

Object Types: same objects

Primitive Types: same value

x.equals (y)

Object Types: method that compares
values of objects

Primitive Types: doesn’t exist

9cs205: engineering software

“hi”“high”

Mutability

• If an object is mutated, all
references to the object see the new
value

sb
java.lang.StringBuffer

tb

StringBuffer sb = new (“hi”);
StringBuffer tb = sb;
tb.append (“gh”);

10cs205: engineering software

Immutable/Mutable Types

• Types can be mutable or immutable

–Objects of an immutable type never
change value after they are created

• String is immutable, StringBuffer is
mutable

– String.concat creates a new String object

– StringBuffer.append mutates the old
object

11cs205: engineering software

public class Strings {

public static void test (String [] args) {
String s = new String ("hello");

String t = new String ("hello");
StringBuffer sb = new StringBuffer ("he");

StringBuffer tb = sb;
String s1 = "hello";

String t1 = "hello";

sb.append ("llo");
tb.append (" goodbye!");

s.concat (" goodbye!");
t = s.concat (" goodbye!");

// What are the values of s, t, sb and tb now?
// Which of these are true:
// a) s == t b) s1 == t1 c) s == s1 d) s.equals (t)
// e) sb == tb f) t.equals (tb)

}
}

12cs205: engineering software

Java Semantics Question
public class Strings {

public static void test () {

String s = new String ("hello");
String t = new String ("hello");

StringBuffer sb = new StringBuffer
("he");

StringBuffer tb = sb;

String s1 = "hello";
String t1 = "hello";

sb.append (“llo");

tb.append (" goodbye!");
s.concat (" goodbye!");
t = s.concat (" goodbye!"); } }

s
“hello”

java.lang.String

t

sb

tb

“hello”

java.lang.String

“he”

java.lang.StringBuffer

s1

t1 “hello”

java.lang.String
String spec is not enough to

determine if s, t, s1 and t1
are the same objects.

3

13cs205: engineering software

Java Language Specification
(Section 3.10.5: String Literals)

Each string literal is a reference (§4.3)
to an instance (§4.3.1, §12.5) of class
String (§4.3.3). String objects have a
constant value. String literals-or, more
generally, strings that are the values of
constant expressions (§15.28)-are
"interned" so as to share unique
instances, using the method
String.intern.

14cs205: engineering software

Java Semantics Question

public class Strings {
public static void test () {

String s = new String
("hello");

String t = new String ("hello");
StringBuffer sb = new

StringBuffer ("he");

StringBuffer tb = sb;
String s1 = "hello";

String t1 = "hello";

sb.append (“llo");
tb.append (" goodbye!");
s.concat (" goodbye!");

t = s.concat (" goodbye!"); } }

s
“hello”

java.lang.String

t

sb

tb

“hello”

java.lang.String

“he”

java.lang.StringBuffer

s1

t1 “hello”

java.lang.String

“hello”

15cs205: engineering software

Java Semantics Question
public class Strings {

public static void test () {
String s = new String ("hello");

String t = new String ("hello");
StringBuffer sb = new StringBuffer

("he");
StringBuffer tb = sb;
String s1 = "hello";

String t1 = "hello";

sb.append (“llo");
tb.append (" goodbye!");

s.concat (" goodbye!");
t = s.concat (" goodbye!"); } }

s
“hello”

java.lang.String

t

sb

tb

“hello”

java.lang.String

“he”

java.lang.StringBuffer

s1

t1 “hello”

java.lang.String

“hello goodbye!”

16cs205: engineering software

Java Semantics Question
public class Strings {

public static void test () {

String s = new String ("hello");
String t = new String ("hello");

StringBuffer sb = new StringBuffer
("he");

StringBuffer tb = sb;

String s1 = "hello";
String t1 = "hello";

sb.append (“llo");

tb.append (" goodbye!");
s.concat (" goodbye!");
t = s.concat (" goodbye!"); } }

s
“hello”

java.lang.String

t

sb

tb

“hello”

java.lang.String

“he”

java.lang.StringBuffer

s1

t1 “hello”

java.lang.String

“hello goodbye!”

“hello goodbye!”

java.lang.String

17cs205: engineering software

public class Strings {

public static void test () {
String s = new String ("hello");

String t = new String ("hello");
StringBuffer sb = new StringBuffer

("he");
StringBuffer tb = sb;
String s1 = "hello";

String t1 = "hello";

sb.append (“llo");
tb.append (" goodbye!");

s.concat (" goodbye!");
t = s.concat (" goodbye!"); } }

s
“hello”

java.lang.String

t

sb

tb

“hello”

java.lang.String

“he”

java.lang.StringBuffer

s1

t1 “hello”

java.lang.String

“hello goodbye!”

“hello goodbye!”

java.lang.String

“hello goodbye!”

java.lang.String

18cs205: engineering software

public class Strings {

public static void test () {
String s = new String ("hello");

String t = new String ("hello");
StringBuffer sb = new StringBuffer

("he");
StringBuffer tb = sb;
String s1 = "hello";

String t1 = "hello";

sb.append (“llo");
tb.append (" goodbye!");

s.concat (" goodbye!");
t = s.concat (" goodbye!"); } }

s
“hello”

java.lang.String

t

sb

tb

“hello”

java.lang.String

“he”

java.lang.StringBuffer

s1

t1 “hello”

java.lang.String

“hello goodbye!”

“hello goodbye!”

java.lang.String

“hello goodbye!”

java.lang.String

After test returns?

4

19cs205: engineering software

Abstraction
by

Specification

20cs205: engineering software

Managing Complexity

• Divide problem into subproblems that

–Can be solved independently

–Can be combined to solve the original
problem

• How do we know they can be solved
independently?

• How do we know they can be
combined to solved the original
problem?

21cs205: engineering software

Abstraction

A

I
1

I
2

I
3

I
4

An abstraction is a many-to-one map.

I
5

22cs205: engineering software

Using Abstractions
A

I
1

I
2

I
3

I
4

I
5

Client

When a client uses an abstraction, it
should work as the client expects it
to no matter with implementation is
provided.

How should client know what to expect?

23cs205: engineering software

Specification

• Tells the client of an abstraction what the
client can expect it to do

• Tells the implementer of an abstraction what
the implementation must do to satisfy the
client

• Contract between client and implementer:

– Client will only rely on behavior described by
specification

– Implementer will provide an implementation that
satisfies the specification

24cs205: engineering software

Good Specifications

• Clear, precise and unambiguous

–Clients and implementers will agree on
what they mean

• Complete

–Describe the behavior of the abstraction
in all situations

• Declarative

–Describe what the abstraction should
do, not how it should do it

5

25cs205: engineering software

Formality of Specifications
• Informal: written in a natural
language (e.g., English)

–People can disagree on what it means

–Degrees of informality

• Formal: written in a specification
language

–Meaning is defined by specification
language (whose meaning is defined
precisely, but eventually informally)

–May be analyzed by machines

26cs205: engineering software

What do you call people who
decide what informal
specifications mean?

27cs205: engineering software

Example Informal
Specification

Excessive bail shall not be
required, nor excessive
fines imposed, nor cruel
and unusual punishments
inflicted.

8th Amendment

28cs205: engineering software

Correct Implementation?

public static boolean

violatesEigthAmendment (Punishment p) {

// EFFECTS: Returns true if p violates the 8th

// amendment: cruel and unusual

// punishments.

return (p.isCruel () && p.isUnusual ());

}

Or did they mean p.isCruel () || p.isUnusual () ?

29cs205: engineering software

Procedural Specifications

• Specification for a procedure
describes:

–What its inputs are

–What the mapping between inputs and
outputs are

–What it can do the state of the world

30cs205: engineering software

Requires and Effects

• Header: name of procedure, types of
parameters and return value

–Java declaration

• Clauses (comments in Java)

–REQUIRES - precondition the client
must satisfy before calling

–EFFECTS – postcondition the
implementation satisfy at return

6

31cs205: engineering software

Contract

• Client promises to satisfy the
precondition in the requires clause

• Implementer promises if client
satisfies the precondition, the return
value and state when the function
returns will satisfy the postcondition.

32cs205: engineering software

Specification Contract

f ()
REQUIRES: precondition
EFFECTS: postcondition

precondition

{ f (); }
postcondition

If the precondition is true,

after we call f (),
the postcondition is true.

33cs205: engineering software

Specification Example

public String bestStock ()

// REQUIRES: false

// EFFECTS: Returns the name of the

// best stock to buy on the NASDAQ

// tomorrow.

Can we implement a
procedure that
satisfies this
specification?

Yes, any implementation will satisfy

this specification! If the precondition in
the requires clause is not satisfied, the

procedure can do anything and still
satisfy its specification!

34cs205: engineering software

Specification Example

public String bestStock ()

// REQUIRES: true

// EFFECTS: Returns the name of the

// best stock to buy on the NASDAQ

// tomorrow.

Can we implement a
procedure that satisfies
this specification?

35cs205: engineering software

Requires Clauses
• The weaker (more easy to make true)
the requires clause:

–The more useful a procedure is for clients

–The more difficult it is to implement
correctly

• Avoid requires clauses unless there is a
good reason to have one

–Default requires clause is: REQUIRES true

–Client doesn’t need to satisfy anything
before calling

36cs205: engineering software

Specification Example

public static int biggest (int [] a)

// REQUIRES: true

// EFFECTS: Returns the value of the

// biggest element of a.

Is this a reasonable specification?

No, what should client expect to happen if a is empty.

7

37cs205: engineering software

Specification Example

public static int biggest (int [] a)

// REQUIRES: a has at least one element.

// EFFECTS: Returns the value of the

// biggest element of a.

Is this a good specification?

Maybe, depends on the client. Its risky…

38cs205: engineering software

Specification Example
public static int biggest (int [] a)

// REQUIRES: true

// EFFECTS: If a has at least one

// element, returns the value biggest

// element of a. Otherwise, returns

// Integer.MIN_VALUE (smallest int

// value).

Better, but client has to deal with special case now.
Best would probably be to use an exception…

39cs205: engineering software

Bad Use of Requires Clause

• Bug discovered in Microsoft Outlook
that treats messages that start with
“begin ” as empty attachments (can
be exploited by viruses)

To workaround this problem:
• Do not start messages with the word "begin" followed by two spaces.

• Use only one space between the word "begin" and the following data.
• Capitalize the word "begin" so that it is reads "Begin."

• Use a different word such as "start" or "commence".
from http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q265230&

(this is no longer available, was “revoked” by Microsoft)

40cs205: engineering software

Modifies

• How does a client know a is the same
after biggest returns?

public static int biggest (int [] a)
// REQUIRES: true
// EFFECTS: If a has at least one element,
// returns the value biggest element of a.
// Otherwise, returns Integer.MIN_VALUE
// (smallest int value).

Reading the effects clause is enough – if biggest modifies
anything, it should describe it. But, that’s a lot of work.

41cs205: engineering software

Modifies

• Modifies clause: any state not listed
in the modifies clause may not be
changed by the procedure.

public static int biggest (int [] a)
// REQUIRES: true
// MODIFIES: nothing
// EFFECTS: If a has at least one element,
// returns the value biggest element of a.
// Otherwise, returns Integer.MIN_VALUE
// (smallest int value).

42cs205: engineering software

Modifies Example

public static int replaceBiggest (int [] a, int [] b)
// REQUIRES: a and b both have at least one
// element
// MODIFIES: a
// EFFECTS: Replaces the value of the biggest
// element in a with the value of the biggest
// element in b.

8

43cs205: engineering software

Defaults
• What should it mean when there is
no requires clause?

• What should it mean when there is
no modifies clause?

• What should it mean when there is
no effects clause?

REQUIRES: true

MODIFIES: nothing

Meaningless.

44cs205: engineering software

Charge

• Specifications in CS205

–Will be informal: written in English
(aided by common mathematical
notations)

– ...but must be precise and clear

–REQUIRES/MODIFIES/EFFECTS style

• Reading before next class:

Chapters 3 and 9

