

Collaboration Policy - Read Carefully

For this problem set, you should work alone, but feel free to ask other students for help and offer help to other students.

Purpose

� Learn basics of programming in Java
� Get familiar with the Eclipse integrated development environment (IDE)
� Provide some exposure to class interactions and object oriented design

Background

Cellular automata are computer simulations inspired by biological cells. An automata simulation starts with a grid of cells, where each
cell is initialized to a particular state. At each step in a simulation, the next state of each cell is determined based on simple rules that
depend on its current state and the current states of its neighbors.

Despite their simplicity, cellular automata can produce complex and interesting patterns. We have provided you with code that
implements a cellular automata simulator. You are encouraged to look over the code, but you do not need to understand this code now
and should not be concerned if it doesn't all make sense yet as it uses concepts that we will not encounter until later in the course.

The cellular automata simulator takes a Java class that defines the rules for each step, and simulates a grid of cells. Each cell can be in
one of two states: dead or alive. A dead cell is shown as a white square and a live cell is shown as a green square. Each cell has
neighbors which are the eight cells that surround it.

Although this is a fairly small program, there are many different ways it might be done. The provided implementation uses many
programming techniques and Java features that we will not cover until later in the class including subtyping, parameterized types,
interfaces, inner classes, exceptions, event handlers, and threads. It is not necessary (or expected) for you to understand all of the
provided code for this assignment. This document will explain the most important parts of the code you need to understand for this
assignment. You are encouraged to be curious about the rest of the code, and feel free to explore it and make changes to it, and think
about better ways to implement this program.

Running the Simulator

Download http://www.cs.virginia.edu/cs250/ps/ps1/code/ps1.zip to your

home directory. Create a J:\cs205 directory and extract all files in the zip file to it (this will

create the cs205\ps1 subdirectory).

The following steps will create an Eclipse project containing the provided source code for Problem Set 1:

1. Open Eclipse by clicking on Start | SEAS | Java Apps | Eclipse

2. Inside the Eclipse window, click on File | New | Project. The New Project dialog box will appear.

3. Select the first option: Java Project and click Next. The New Java Project dialog box will appear.

4. In the Project name: box enter, ps1. In the Contents pane, select Create project from existing source,

and select the directory where you extracted the ps1 code (J:\cs205\ps1). Click Next and then Finish on the next

dialog box.

Now, you should see the Package Explorer view, containing the ps1 folder. Click on the folder to explore the files.

Eclipse automatically compiles Java projects when they are imported. Also, whenever you make a change to a Java source file and
save it, the changes are automatically compiled. If you want to force Eclipse to rebuild the entire project, select Project | Clean.

cs205: engineering software?
http://www.cs.virginia.edu/cs205/ps/ps1/

23 August 2006

Problem Set 1

Game of Life

Out: 23 August
Due: Monday, 28 August

(beginning of class)

Page 1 of 5cs205: Problem Set 1: Game of Life

8/23/2006http://www.cs.virginia.edu/cs205/ps/ps1/

Try running the cellular automata simulator using the provided ExtremeLifeCell class to model each cell. To do so:

1. Select Run | Run from the Eclipse menu bar.

2. Select Java Application as the configuration on the left. Select CellAutomata for the main class.

3. Click on the Arguments tab and enter ExtremeLifeCell into the program arguments text window.

4. Click on the Run button on the bottom right of the window.

Eclipse will run the Java virtual machine, which starts by calling the main method of the CellAutomata class. The command line

arguments (ExtremeLifeCell) are passed as a parameter to the main method, which loads the ExtremeLifeCell class and

initializes the grid to contain an ExtremeLifeCell object in each square.

When the simulator starts, click on a cell and wait for it to turn green. Cells that are alive appear green; non-alive cells are displayed in
white. Then press start and observe what happens. You can also use Step to run the simulation one step at a time. Try to figure out

what rules the ExtremeLifeCell is following just by observing its behavior. (You'll see the code later.)

The Cellular Automata Simulator

The implementation of this cellular automata contains modules for providing the graphical user interface, maintaining a grid of cells,
and implementing the rules for a given cell. Here we provide a description of some of the most important classes, but you do not need
to understand the details of how these classes are implemented.

CellAutomata.java

This is the main class for the implementation of the cellular automata. It sets up the user interface using Swing. Swing
provides classes for displaying windows and handling input events.

The CellAutomata.main method initializes a grid of cells, each containing an object instance of the class passed in

as the first parameter to main. Then, it displays the grid. The actionPerformed method makes the appropriate things

happen when the user clicks on the Start, Stop, and Step buttons.

To load a specific cell class, you specify the cell class as a program argument when running the Java application. To test
the class your create, replace ExtremeLifeCell with the name of your cell class. (Note that the .class extension

should not be included.)

CellGrid.java — This class keeps track of all the states of the cells on the board. The most important method of the CellGrid

class is step which excutes one step in the simulation:

public void step() {

 // Because we need to update all cells synchronously, we

 // first calculate the next state for each cell, and store it

 // in a temporary array:

 CellState[][] nextStates = new CellState[x_max + 1][y_max + 1];

 for (int x = 0; x <= x_max; x++) {

 for (int y = 0; y <= y_max; y++) {

 Cell cell = (Cell) getObjectAt(x, y);

 nextStates[x][y] = cell.getNextState();

 }

 }

 // Then, we update all the cells:

 for (int x = 0; x <= x_max; x++) {

 for (int y = 0; y <= y_max; y++) {

 Cell cell = (Cell) getObjectAt(x, y);

 cell.setState(nextStates[x][y]);

 }

 }

}

Page 2 of 5cs205: Problem Set 1: Game of Life

8/23/2006http://www.cs.virginia.edu/cs205/ps/ps1/

CellState.java — implements a datatype for recording the state of a cell:

import java.awt.Color;

public class CellState {

 // OVERVIEW: A CellState is an immutable object that represents

 // the state of a cell, either alive or dead.

 private boolean alive;

 private CellState(boolean isalive)

 // EFFECTS: Initializes this to alive if isalive is true,

 // otherwise initializes this to the dead state.

 {

 this.alive = isalive;

 }

 static public/* nonnull */CellState createAlive()

 // EFFECTS: Returns an alive cell state.

 {

 return new CellState(true);

 }

 static public/* nonnull */CellState createDead()

 // EFFECTS: Returns a dead cell state.

 {

 return new CellState(false);

 }

 public Color getColor()

 // EFFECTS: Returns the display color for this state

 {

 if (alive) return Color.green;

 else return Color.white;

 }

 public boolean isAlive()

 // EFFECTS: Returns true iff this is alive.

 {

 return alive;

 }

}

The methods with static modifiers are class methods, used to create new states. They are not invoked on an object (there is no

this). Instead, invoke them using CellState.createAlive() and CellState.createDead().

Cell.java — This class provides a basic Cell implementation. It includes the methods specified below:

public class Cell extends SimObject {

 private/* nonnull */CellState state;

 public Cell()

 // EFFECTS: Initializes this to a dead cell.

 public/* nonnull */java.awt.Color getColor()

 // EFFECTS: Returns the display color for this.

 public boolean setState(/* nonnull */CellState s)

 // MODIFIES: this

 // EFFECTS: Sets the cell's current state to s. Returns true iff the new

Page 3 of 5cs205: Problem Set 1: Game of Life

8/23/2006http://www.cs.virginia.edu/cs205/ps/ps1/

 // state is different from the current state.

 public/* nonnull */CellState getState()

 // EFFECTS: Returns the cell's current state.

 boolean isAlive()

 // EFFECTS: Returns true if the cell is alive, false otherwise.

 public/* nonnull */CellState getNextState()

 // REQUIRES: init has previously been called for this.

 // EFFECTS: Returns next state value for this.

 // Note: For the underlying Cell class, the next state is always the

 // current state. Override this method to implement

 // different cell automata rules.

}

Producing Cell Behaviors

To produce cellular automata with interesting behavior, you will create a subtype of the Cell class and override the

getNextState method to do something more interesting. The ExtremeLifeCell.java class implements a cell that follows

the Extreme Life rules. We use extends Cell to indicate that the ExtremeLifeCell class is a subtype of Cell. This means it

inherits the non-private methods from the Cell class. To implement a new cell behavior, we need to provide a new implementation

of the getNextState method. Here is the ExtremeLifeCell class:

public class ExtremeLifeCell extends Cell {

 public CellState getNextState()

 // EFFECTS: Returns the next state for this cell.

 // The next state will be alive if this cell or any of its neighbors

 // is currently alive.

 {

 Enumeration neighbors = getNeighbors();

 while (neighbors.hasMoreElements()) {

 SimObject neighbor = neighbors.nextElement();

 if (neighbor instanceof Cell) {

 Cell cell = (Cell) neighbor;

 if (cell.isAlive()) {

 // If the cell has at least one neighboring cell

 // that is alive, this cell should become alive.

 return CellState.createAlive();

 }

 }

 }

 // No alive neighbor found, next state is current state

 return getState();

 }

}

The getNextState method replaces the Cell.getNextState method. The while loop goes through the cell's neighbors

(returned by the call to getNeighbors() (which is defined in SimObject, and inherited through the Cell class). If a neighbor is

found that is in the alive state (cell.isAlive()), it returns immediately with the result an alive state. If the loop finishes without

finding an alive neighbor, the cell maintains its current state.

Conway's Game of Life

John Conway, a Cambridge mathemetician, invented the game of life with these simple rules:

1. If a cell is currently dead cell and has three live neighbors, then it becomes a live cell.
2. If a cell is currently alive and has two or three live cells it remains alive.
3. Otherwise, the cell dies.

Page 4 of 5cs205: Problem Set 1: Game of Life

8/23/2006http://www.cs.virginia.edu/cs205/ps/ps1/

1. Using the ExtremeLifeCell.java code as an example, produce a ConwayLifeCell.java file containing a

class that implements the Conway's Game of Life cellular automaton. To create a new class in Eclipse, select File |

New | Class fron the Eclipse main menu, and enter the class name (ConwayLifeCell in the Name field. Change

the superclass to Cell. Eclipse will generate a stub class file for you. You will need to provide an implementation of the

getNextState method that implements the Conway's Game of Life rules.

With these simple rules, it is possible to produce many interesting patters. For example, if you start with three cells in a row it should
produce a blinker that alternates between three horizontal and three vertical live cells. Experiment with different initial conditions to
see what happens.

2. Modify the program so that instead of dying instantly, cells go through a dying state where they are displayed in a
different color for one step before they die. (If you are more ambitious, feel free to make additional modifications and
improvements.)

Turn-in Checklist: You should turn in your answers on paper at the beginning of class on Monday, 28 August. For
question 1, turn in your ConwayLifeCell.java code. For question 2, describe the changes you made and turn in all

the code you changed.

Related links:

� Wonders of Math - The Game of Life
� Scientific American article (October 1970): Mathematical Games: The fantastic combinations of John Conway's new solitaire

game "life"

Credits: This problem set was originally developed for UVa CS 201J Fall 2002 by Mike Peck, Tiffany Nichols and David Evans, revised for UVa CS201J
Fall 2003 by Mike Peck, John Franchak and Leonid Bolotnyy, and revised for UVa CS205 Fall 2006 by David Evans.

cs205: engineering software
University of Virginia

evans@cs.virginia.edu
Using these Materials

Page 5 of 5cs205: Problem Set 1: Game of Life

8/23/2006http://www.cs.virginia.edu/cs205/ps/ps1/

