¢s205: engineering software
university of virginia fall 2006

David Evans

WWW.cs.virginia.edu/cs205

How do we know if saying
B is a subtype of A
is safe?

Substitution Principle: If B is a
subtype of A, everywhere the code
expects an A, a B can be used instead
and the program still satisfies its
specification

cs205: engineering software 2

Subtype Condition 1: Signature Rule

We can use a subtype method where

a supertype methods is expected:

- Subtype must implement all of the
supertype methods

- Argument types must not be more
restrictive

- Result type must be at least as restrictive

- Subtype method must not throw
exceptions that are not subtypes of
exceptions thrown by supertype

Signature Rule

class A {
public Ry m (P, p) ;
b

class B extends A {
public Rz m (Pg p) ;
}

Rg must be a subtype of Ry: Rg <= Ry
Pg must be a supertype of P,: Py >= P,
covariant for results, contravariant for parameters

€5205: engineering software 3

€5205: engineering software 4

Subtype Condition 2: Methods Rule

¢ Precondition of the subtype method
must be weaker than the precondition
of the supertype method.

My.pre = mg.pre

¢ Postcondition of the subtype method
must be stronger than the
postcondition of the supertype
method.

Mg.post = m,.post

publicint f (a A, x X) {
// REQUIRES: a is initialized
// EFFECTS: returns a.value * x.value
return a.m (x);

public class A { ¥
// An A may be initialized or uninitialized.
// An initialized A has an associated int value.
public int m (x X) {
// REQUIRES: this is initialized
¥ public class B extends A {
// A B may be initialized or uninitialized.
// A B may be awake or asleep.
// An initialized B has an associated int value.
public int m (x X) {
// REQUIRES: this is initialized and-awake
} Can’t make the precondition

stronger! The callsite might
not satisfy it.

€s205: engineering software 5

cs205: engineering software 6

publicint f (a A, x X) {
// REQUIRES: a is initialized
// EFFECTS: returns a.value * x.value
return a.m (x);
public class A {

// An A may be initialized or uninitialized.

// An initialized A has an associated int value.

public int m (x X) {

// REQUIRES: this is initialized

public class B extends A {
// A B may be initialized or uninitialized.
// A B may be awake or asleep.
// An initialized B has an associated int value.
public int m (x X) {
// REQUIRES: nothing

AN

Okay, precondition is weaker

€s205: engineering software 7

Subtype Condition 3: Properties

Subtypes must preserve all
properties described in the
overview specification of the
supertype.

s205: engineering software 8

Properties Example

public class StringSet {
// Overview: An immutable set of Strings.

public class MutStringSet exterds-StFngSet {

// Overview: A mutable set of Strings.

MutStringSet cannot be a subtype
of StringSet, since it does not
satisfy unchangable property.

€s205: engineering software 9

Properties Example

public class StringSet extends MutStringSet {
// Overview: An immutable set of Strings.

public class MutStringSet {
// Overview: A mutable set of Strings.

StringSet could be a subtype of MutStringSet
according to the properties rule.

|...but couldn’t satisfy methods rule

€s205: engineering software 10

Substitution Principle Summary

e Signatures: subtype methods must be type
correct in supertype callsites: result is a
subtype (covariant), parameters are
supertypes (contravariant)

e Methods: subtype preconditions must be
weaker than supertype preconditions
(covariant); subtype postconditions must be
stronger than supertype postconditions
(contravariant)

¢ Properties: subtype must preserve all
properties specified in supertype overview

cs205: engineering software 11

Substitution Mystery
) (in client code)
MysteryTypel mtl;

MysteryType2 mt2;
MysteryType3 mt3;

(anything could be here)
mtl = mt2.m (mt3);

If the Java compiler accepts this code, which of these are guaranteed

to be true:

. The apparent type of mt2 is MysteryType2

. At the last statement, the actual type of mt2 is MysteryType2

. MysteryType2 has a method named m

. The MysteryType2.m method takes a parameter of type MysteryType3

. The MysteryType2.m method returns a subtype of MysteryTypel
After the last statement, the actual type of mtl is MysteryTypel

SO Q0 oo

€s205: engineering software 12

(in client code)
MysteryTypel mt1;
MysteryType2 mt2;
MysteryType3 mt3;

(anything could be here)
mtl = mt2.m (mt3);

a. The apparent type of mt2 is MysteryType2
TRUE: the apparent type is obvious from the declaration.
. At the last statement, the actual type of mt2 is MysteryType2
FALSE: we only know the actual type <= MysteryType2
c. MysteryType2 has a method named m
TRUE

o

[=%

. The MysteryType2.m method takes a parameter of type MysteryType3
FALSE: we only know it takes a parameter >= MysteryType3
e. The MysteryType2.m method returns a subtype of MysteryTypel
TRUE: the assignment type checking depends on this
f. After the last statement, the actual type of mtl is MysteryTypel
FALSE: we only know that the actual type <= MysteryTypel

€s205: engineering software 13

Demystifying Subtyping

(in client code)
class A { MysteryTypel mtl;
public RA m (PA p) ; MysteryType2 mt2;
MysteryType3 mt3;

mtl = mt2.m (mt3);
If A is MysteryType2, what do we know
about RA and PA?

RA must be a subtype of MysteryTypel:
RA <= MysteryTypel

MysteryType3 must be a subtype of PA:
PA >= MysteryType3

€5205: engineering software 14

Subtyping Rules

class A { ... (in client code)

X . MysteryTypel mti;
public RA m (PA p) ; MysteryType2 mt2;

MysteryType3 mt3;
class B extends A { ___ys eyiypesm

public RB m (PB a); mtl = mt2.m (mt3);
}

If B <= A, what do we know about RB and PB?

RB must be a subtype of RA: RB <= RA
PA must be a subtype of PB: PB >= PA

€5205: engineering software 15

Substitution Principle Summary

Param Types Psub > Psuper contravariant
Preconditions pre_sub = pre_super for inputs

Result Type Rsub < Rsuper covariant
Postconditions post_sub = post_super for outputs

Properties properties_sub = properties_super

These properties ensure if sub is a subtype of super,
code that is correct using an object of supertype is
correct using an object of subtype.

€s205: engineering software 16

Substitution Principle

Is this the only way?

cs205: engineering software 17

Eiffel’s Rules

(Described in Bertrand Meyer paper out today)

€s205: engineering software 18

Eiffel Rules

The types of the parameters in
the subtype method may be
subtypes of the supertype

Skier parameters.
set_roommate (Skier)

How can Girl override set_roomate?
set_roommate (Girl g)
set_roommate (Boy b)

Opposite of substitution
principle!

cs205: engineering software 19

Eiffel and I Can’t Get Up?

: s: skier; g: girl; b:
Skier bov:
set_roommate (Skier) \Z

\ s:=g;

Boy Girl s.set_roommate (b);

set_roomate (Girl)

Meyer’s paper is all about the
contortions Eiffel needs to deal with
non-substitutable subtypes

Substitution Principle / Eiffel

class A{ (in client code)
f . MysteryTypel mtl;
) public RA m (PA p) ; MysteryType2 mt2;

MysteryType3 mt3;
class B extends A { ySErvIvp

public RB m (PB a); mtl = mt2.m (mt3);

} Substitution Principle Eiffel

Parameters Psub 2 Psuper Psub < Psuper
Preconditions pre_sub = pre_super pre_sub = pre_super

Result Rsup < Rsuper
Postconditions post_sup = post_super

cs205: engineering software 20

€5205: engineering software

Charge

Must it be assumed that
because we are engineers
beauty is not our concern,

and that while we make our
~ constructions robust and
"~ durable we do not also strive
to make them elegant?

Is it not true that the

3 genuine conditions of

| strength always comply with
-5 the secret conditions of

" harmony?

Gustav Eiffel

21

€s205: engineering software 22

