
1

cs205: engineering software
university of virginia fall 2006

Validation

David Evans
www.cs.virginia.edu/cs205

2cs205: engineering software

Dictionary Definition

val·i·date

1. To declare or make legally valid.

2. To mark with an indication of
official sanction.

3. To establish the soundness of;
corroborate.

Can we do any of these with software?

3cs205: engineering software

Java’s License

READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED

SUPPLEMENTAL LICENSE TERMS (COLLECTIVELY "AGREEMENT")
CAREFULLY BEFORE OPENING THE SOFTWARE MEDIA

PACKAGE. BY OPENING THE SOFTWARE MEDIA PACKAGE, YOU

AGREE TO THE TERMS OF THIS AGREEMENT. IF YOU ARE
ACCESSING THE SOFTWARE ELECTRONICALLY, INDICATE YOUR

ACCEPTANCE OF THESE TERMS BY SELECTING THE "ACCEPT"
BUTTON AT THE END OF THIS AGREEMENT. IF YOU DO NOT

AGREE TO ALL THESE TERMS, PROMPTLY RETURN THE UNUSED

SOFTWARE TO YOUR PLACE OF PURCHASE FOR A REFUND OR,
IF THE SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT THE

"DECLINE" BUTTON AT THE END OF THIS AGREEMENT.

4cs205: engineering software

Java’s License
5. LIMITATION OF LIABILITY. TO THE
EXTENT NOT PROHIBITED BY LAW, IN NO
EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY LOST REVENUE, PROFIT OR
DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED REGARDLESS
OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO THE USE OF OR
INABILITY TO USE SOFTWARE, EVEN IF SUN
HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. …

5cs205: engineering software

Java’s License
2. RESTRICTIONS. … Unless
enforcement is prohibited by applicable
law, you may not modify, decompile, or
reverse engineer Software. You
acknowledge that Software is not
designed, licensed or intended for use
in the design, construction, operation or
maintenance of any nuclear
facility. Sun disclaims any express or
implied warranty of fitness for such
uses.

6cs205: engineering software

Software Validation

• Process designed to increase our
confidence that a program works as
intended

• For complex programs, cannot often
make guarantees

• This is why typical software licenses
don’t make any claims about their
program working

2

7cs205: engineering software

Increasing Confidence
• Testing

–Run the program on set of inputs and
check the results

• Verification

–Argue formally or informally that the
program always works as intended

• Analysis

–Poor programmer’s verification:
examine the source code to increase
confidence that it works as intended

8cs205: engineering software

Testing and Fishing

Using some
successful tests to
conclude that a
program has no
bugs, is like
concluding there are
no fish in the lake
because you didn’t
catch one!

9cs205: engineering software

Exhaustive Testing

• Test all possible inputs

• PS1: 50x50 grid, all cells can be
either dead or alive before starting

22500
=

37582802345480120368336241897238650486773655175925867705652383978223168149833770853573272575265884
43337024577495260577603092278913516177656519073109687802364646940433162365621467244164785911318325
93729111221580180531749232777515579969899075142213969117994877343802049421624954402214529390781647
56333953502477258490160766686298256791862284963616020887736583495016379018852302624744050739038203
21888923861099058697067531432439211984822120754440224333665547868565593896895856381265823772240377
21702239991441466026185752651502936472280911018500320375496336749951569521541850441747925844066295
27967187260528579255266013070204799821833474935632167746952968255176585826750271589400788772725007
0780350262952377214028842297486263597879792176338220932619489509376

But that’s not all: all possible start stop step clicks,
different platforms, how long to you need to run it, etc.

10cs205: engineering software

Selective Testing

• We can’t test everything, pick test
cases with high probability of finding
flaws

• Black-Box Testing: design tests
looking only at specification

• Glass-Box Testing: design tests
looking at code

–Path-complete: at least one test to
exercise each path through code

11cs205: engineering software

Black-Box Testing

Test all paths through the specification

public CellState getNextState ()

// MODIFIES: this

// EFFECTS: Returns the next state for this cell. If a cell is currently
// dead cell and has three live neighbors, then it becomes a live cell.

// If a cell is currently alive and has two or three live neighbors it
// remains alive. Otherwise, the cell dies.

12cs205: engineering software

Test all paths through the specification:

1. currently dead, three live neighbors

2. currently alive, two live neighbors

3. currently alive, three live neighbors

4. currently dead, < 3 live neighbors

5. currently dead, > 3 live neighbors

6. currently alive, < 2 live neighbors

7. currently alive, > 3 live neighbors

public CellState getNextState ()

// MODIFIES: this
// EFFECTS: Returns the next state for this cell. If a cell is currently

// dead cell and has three live neighbors, then it becomes a live cell.
// If a cell is currently alive and has two or three live neighbors it

// remains alive. Otherwise, the cell dies.

3

13cs205: engineering software

Black-Box Testing

Test all (7) paths through the specification

Test boundary conditions

1. all neighbors are dead

2. all neighbors are alive

3. cell is at a corner of the grid

4. cell is at an edge of the grid

public CellState getNextState ()

// MODIFIES: this
// EFFECTS: Returns the next state for this cell. If a cell is currently

// dead cell and has three live neighbors, then it becomes a live cell.

// If a cell is currently alive and has two or three live neighbors it
// remains alive. Otherwise, the cell dies.

14cs205: engineering software

Glass-Box Testing
public CellState getNextState()
{

int countalive = 0;
Enumeration<SimObject> neighbors = getNeighbors();

while (neighbors.hasMoreElements()) {
SimObject neighbor = neighbors.nextElement();

if (neighbor instanceof Cell) {
Cell cell = (Cell) neighbor;

if (cell.isAlive()) { countalive++; }
}

if (countalive == 3) {
return CellState.createAlive ();

} else if (getState ().isAlive () && countalive == 2) {
return CellState.createAlive ();

} else { return CellState.createDead (); }
}

How many paths are
there through this code?

15cs205: engineering software

Path-Complete Testing

• Insufficient

–Often, bugs are missing paths

• Impossible

–Most programs have an infinite number
of paths

–Loops and recursion

• Test with zero, one and several iterations

–Branching

• Can test all paths

16cs205: engineering software

How many paths?

if (countalive == 3) {
return CellState.createAlive ();

} else if (getState ().isAlive () && countalive == 2) {
return CellState.createAlive ();

} else {
return CellState.createDead ();

}
}

17cs205: engineering software

Testing Recap
• Testing can find problems, not to prove
your program works

–Since exhaustive testing is impossible,
select test cases with maximum
probability of finding bugs

–A successful test case is one that reveals a
bug in your program!

• Typically at least 40% of cost of
software project is testing, often ~80%
of cost for safety-critical software

18cs205: engineering software

Quizzing

4

19cs205: engineering software

Testing Recap
• Testing can find problems, but can’t
prove your program works

–Since exhaustive testing is impossible,
select test cases with maximum
probability of finding bugs

–A successful test case is one that reveals
a bug in your program!

• If we can’t test all possible paths
through a program, how can we
increase our confidence that it works?

20cs205: engineering software

Analysis

• Make claims about all possible paths
by examining the program code
directly, not executing it

• Use formal semantics of programming
language to know what things mean

• Use formal specifications of
procedures to know that they do

21cs205: engineering software

Hopelessness of Analysis

It is impossible to correctly
determine if any interesting property
is true for an arbitrary program!

The Halting Problem: it is
impossible to write a
program that determines if
an arbitrary program halts.

22cs205: engineering software

Compromises
• Use imperfect automated tools:

– Accept unsoundness and incompleteness

– False positives: sometimes an analysis tool will
report warnings for a program, when the
program is actually okay (unsoundness)

– False negatives: sometimes an analysis tool
will report no warnings for a program, even
when the program violates properties it checks
(incompleteness)

• Use informal reasoning

• Design programs to modularize
reasoning

23cs205: engineering software

Charge

• Next class:

–ps2 hints

–Exceptions, programming defensively

