CS216: Program and Data Representation
University of Virginia Computer Science

Spring 2006 David Evans

Lecture 10:
*R1%[]++

WM" T e A
http://www.cs.virginia.edu/cs216

C Bounds Non-Checking

int main (void) {
intx=9;
char s[4];
gets(s);
printf ("s is: %s\n", s);
printf ("x is: %d\n", x);

Note: your results
may vary
(depending on
machine, compiler,
what else is
running, time of
day, etc.). Thisis
what makes C fun!

> gcc -0 bounds bounds.c

> bounds

abcdefghijkl

sis: abcdefgh
xis: 9

> bounds

abcdefghijklm

s is: abcdefghijklmn

x is: 1828716553 _

> bounds = 0x6d000009
abcdefghijkin

s is: abcdefghijkin

x is: 1845493769 = Qx6e000009
> bounds T

aaa... [a few thousand characters]
crashes shell

What does this kind of mistake
look like in a popular server?

UVa CS216 Spring 2006 - Lecture 10: Pointers

Code Red

Reasons Not to Use C

¢ No bounds checking

- Programs are vulnerable to buffer
overflow attacks

¢ No automatic memory management
- Lots of extra work to manage memory

manually

- Mistakes lead to hard to find and fix bugs

¢ No support for data abstraction,
objects, exceptions

UVa CS216 Spring 2006 - Lecture 10: Pointers 3

UVa CS216 Spring 2006 - Lecture 10: Pointers

So, why would anyone
use C today?

Good Reasons to Use C

Legacy Code: Linux, apache, etc.
e Simple, small

- Embedded systems, often only have a C compiler

e Low-level abstractions
- Performance: typically 20-30x faster than
interpreted Python
- Sometimes we need to manipulate machine state
directly: device drivers
e Lots of experience
- We know pitfalls for C programming
- Tools available that catch them

UVa CS216 Spring 2006 - Lecture 10: Pointers 5

UVa CS216 Spring 2006 - Lecture 10: Pointers

What are those arrows really?

Stack Heap

s = “hello”

N

Pointers
e In Python, an object reference is
really just an address in memory

Stack Heap
0x80496£0
0x80496f4
0x80496£8 | hell

0x80496fb | 0\0\0\O
0x8049700
0x8049704
0x8049708

S [0x80496£g

UVa CS216 Spring 2006 - Lecture 10: Pointers 7

UVa CS216 Spring 2006 - Lecture 10: Pointers

Pointers in C

e Addresses in memory

e Programs can manipulate addresses
directly

&*%&@#*!

int f (void) {
ints =1;
intt=1;
int *ps = &s;
int **pps = &ps;
int *pt = &t;

&expr Evaluates to the address of the
location expr evaluates to
*expr Evaluates to the value stored in
the address expr evaluates to
UVa CS216 Spring 2006 - Lecture 10: Pointers 9

UVa CS216 Spring 2006 - Lecture 10: Pointers

10

Rvalues and Lvalues

What does = really mean?

int f (void) {
ints = 1, left side of = is an “Ivalue”
it evaluates to a location (address)!

intt = ll right side of = is an “rvalue”
=g it evaluates to a value
7
t=2; There is an implicit *

¥ when a variable is
used as an rvalue!

Parameter Passing in C

e Actual parameters are rvalues

void swap (int a, int b) {
inttmp =b; b=a; a=tmp;

¥

int main (void) {
inti=3;
intj=4;
swap (i, j);
. The value of i (3) is passed, not its location!
} swap does nothing

UVa CS216 Spring 2006 - Lecture 10: Pointers 11

UVa CS216 Spring 2006 - Lecture 10: Pointers

12

Parameter Passing in C

void swap (int *a, int *b) {
int tmp = *b; *b = *a; *a = tmp;

¥

int main (void) {
inti =3;
intj=4;

swap (&, &j);

The value of &i is passed, which is the address of i
¥

Is it possible to define swap in Python?

UVa CS216 Spring 2006 - Lecture 10: Pointers 13

Manipulating Addresses

char s[6];

s[0] ='h’; expri[expr2] in C is just
s[1] ="'e’; syntactic sugar for
s[2]="1" *(exprl + expr2)

s[3] ="1;

s[4] =0

s[5] ="\0%
printf ("s: %s\n”, s);

s: hello

Beware!

int *value (void)

inti =3;
return &i;

void callme (void)

intx = 35;

int main (void) {

UVa CS216 Spring 2006 - Lecture 10: Pointers 15

int *ip;
ip = value (); .
printf (“*ip == %d\n", *ip); *Ip ==
callme (); .
printf ("*ip == %d\n", *ip); *ip == 35
¥ But it could really be anything!
UVa CS216 Spring 2006 - Lecture 10: Pointers 14
Obfuscating C
char s[6];
*s - \hl;
s+ 1) ="e]
2[s] = ;
3[s] = ;

*(s +4) ='0;
5[s] ="\0;
printf ("s: %s\n”, s);
s: hello

UVa CS216 Spring 2006 - Lecture 10: Pointers 16

Fun with Pointer Arithmetic

int match (char *s, char *t) {
int count = 0;
while (*s == *t) { count++; s++; t++; }
return count;

}
int main (void)
S &s2[1]
char s1[6] = "hello"; The \O0 is invisible!
char s2[6] = "hohoh"; 28&(*(s2 + 1))
2>s2+1

printf ("match: %d\n", match (s1, s2));
printf ("match: %d\n", match (s2, s2 + 2));

printf ("match: %d\n", match (8s2[1], 8s2[3)); Torg 3
) :

match: 2

Condensing match

int match (char *s, char *t) {
int count = 0;
while (*s == *t) { count++; s++; t++; }
return count;

b

int match (char *s, char *t) {
char *os ='s;
while (¥s++ == *t++);
returns—os - 1;

b

s++ evaluates to s,., but changes the value of s
Hence, C++ has the same value as C, but has
unpleasant side effects.

UVa CS216 Spring 2006 - Lecture 10: Pointers 17

UVa CS216 Spring 2006 - Lecture 10: Pointers 18

Quiz

e What does s = s++; do?

It is undefined!

If your C programming contains
it, a correct interpretation of your
program could make s = Spre + 1,
s = 37, or blow up the computer.

UVa CS216 Spring 2006 - Lecture 10: Pointers 19

Type Checking in C

¢ Java: only allow programs the

compiler can prove are type safe
Exception: run-time type errors for downcasts
and array element stores.

e C: trust the programmer. If she
really wants to compare apples and
oranges, let her.

e Python: don’t trust the programmer

or compiler — check everything at
runtime.

UVa CS216 Spring 2006 - Lecture 10: Pointers 20

Type Checking

int main (void) {
char *s = (char *) 3;
printf ("s: %s", s

} bounds. exe

bounds.exe has encountered a problem and needs to
close. We are sonty for the inconvenience.

11 you wete i the riddls of something, the irformation you were working on
might be lost

Please tell Microsaft about this problem.
e have created an enor report that you can send to us. We willireat
thi repart as confidential and anonymoLs.

To see what data this etror report contains, click hete

Debug Send EnorRepor | [[TartSen |
Windows XP (SP 2)

UVa CS216 Spring 2006 - Lecture 10: Pointers 21

Type Checking

int main (void) {
char *s = (char *) 3;
printf ("s: %s", s);

by

silly.exe - Application Error x|
0 ‘The: instruction at "0x0040138¢" refarenced memory &t "0x00000003", The memary could not be “read”,

Click on OK o terminate the program
Click on CANCEL to debug the program

Windows 2000
(earlier versions of Windows would just crash the whole machine)

UVa CS216 Spring 2006 - Lecture 10: Pointers 22

Python’s List Implementation
(A Whirlwind Tour)

UVa CS216 Spring 2006 - Lecture 10: Pointers 23

listobject.c

/* List object implementation */

We’'ll get back to this...

Finclude "Python. but you should be convinced

#ifdef STDC_HEADERS

AGAIIb e that you are lucky to have been
#else | using a language with automatic
#include <sys/types.h> /* For siz

#rendif memory management so far!

/* Ensure ob_item has room for at least newsize elements, and set ob_size to newsize. If
newsize > ob_size on entry, the content of the new slots at exit is undefined heap trash; it's the
caller's responsiblity to overwrite them with sane values. The number of allocated elements may
grow, shrink, or stay the same. Failure is impossible if newsize <= self.allocated on entry,
although that partly relies on an assumption that the system realloc() never fails when passed a
number of bytes <= the number of bytes last allocated (the C standard doesn't guarantee this,
but it's hard to imagine a realloc implementation where it wouldn't be true).

Note that self->ob_item may change, and even if newsize is less than ob_size on entry.

*/

static int
list_resize(PyListObject *self, Py_ssize_t newsize)

UVa CS216 Spring 2006 - Lecture 10: Pointers 24

listobject.h
typedef struct {

PyObject_VAR_HEAD
/* Vector of pointers to list elements. list[0] is ob_item[0], etc. */
PyObject **ob_item;

/* ob_item contains space for ‘allocated’ elements. The number
*currently in use is ob_size.
* Invariants:

Now we know our answer to PS1 #6 (Python’ s list
implementation is continuous) is correct!

TS TSUTT/ TCTTPUTarTy ST TS anuCarcu 10T (U UCTC Gl TTTUTaoTTS:

* Items must normally not be NULL, except during construction when
* the list is not yet visible outside the function that builds it.
Y/
Py_ssize_t allocated;
} PyListObject;
http://svn.python.org/view/python/trunk/Include/listobject.h

UVa CS216 Spring 2006 - Lecture 10: Pointers 25

Append

int
PyList_Append(PyObject *op, PyObject *newitem)
{

if (PyList_Check(op) && (newitem != NULL))
return app1((PyListObject *)op, newitem);

PyErr_BadInternalCall();

return -1;

¥

UVa CS216 Spring 2006 - Lecture 10: Pointers 26

static int
app1(PyListObject *self, PyObject *v)
{
Py_ssize_t n = PyList_GET_SIZE(self);

assert (v != NULL);
if (n == INT_MAX) {
PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");
return -1;

Checks there is
if (list_resize(self, n+1) == -1) enough space to

return -1; “~Jadd 1 more element
Py_INCREF(v); (and resizes if
PyList_SET_ITEM(self, n, v);
return 0; necessary)
}
UVa CS216 Spring 2006 - Lecture 10: Pointers 27

static int

app1(PyListObject *self, PyObject *v)

{
Py_ssize_t n = PyList_GET_SIZE(self);
assert (v != NULL);
if (n == INT_MAX) {

PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");

return -1;
Complicated macro

if (list_resize(self, n+1) == -1) for memory

return -1; / management: needs to
Py_INCREF(v); keep track of how many
PyList_SET_ITEM(self, n, v); references there are to
return 0; object v

b
UVa CS216 Spring 2006 - Lecture 10: Pointers 28

Set Item (in listobject.h)

/* Macro, trading safety for speed */
#define PyList_SET_ITEM(op, i, v) \
(((PyListObject *)(op))->ob_item[i] = (v))

Macro: text replacement, not
procedure calls.

PyList_SET_ITEM(self, n, v);

(((PyListObject *)(self))->ob_item[n] = (v))

UVa CS216 Spring 2006 - Lecture 10: Pointers 29

Set Item (in listobject.h)

(((PyListObject *)(self))->ob_item[n] = (v))

typedef struct {
PyObject_VAR_HEAD
/* Vector of pointers to list elements. list[0] is ob_item[0], etc. */
PyObject **ob_item;

/* ob_item contains space for ‘allocated’ elements. The number
*currently in use is ob_size.
*Invariants: ... "/
Py_ssize_t allocated;
} PyListObject;

Now we can be (slightly) more confident that our
answer to PS1 #4 (append is O(1)) was correct!

UVa CS216 Spring 2006 - Lecture 10: Pointers 30

list_resize

static int
list_resize(PyListObject *self, Py_ssize_t newsize)

{

/* This over-allocates proportional to the
list size, making room for additional growth.
The over-allocation is mild, but is enough to
give linear-time amortized behavior over
a long sequence of appends()... */

Monday’s class will look at list_resize

Charge

¢ This is complicated, difficult code
—-We could (but won't) spend the rest of the
semester without understanding it all
completely
¢ Now we trust PS1 #4

- But...only amortized O(1) - some appends
will be worse than average!

-We shouldn't trust Python’s developers’
comments

e Exam 1 is out now, due Monday

UVa CS216 Spring 2006 - Lecture 10: Pointers 31

=Workalone, Tead Tutes onfirst page
s

O
UVa CS216 Spring 2006 - Lecture 14: Pointer: 32

