
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 10:
*&!%[]++

http://www.cs.virginia.edu/cs216 2UVa CS216 Spring 2006 - Lecture 10: Pointers

C Bounds Non-Checking
int main (void) {
int x = 9;

char s[4];

gets(s);
printf ("s is: %s\n“, s);

printf ("x is: %d\n“, x);
}

> gcc -o bounds bounds.c

> bounds
abcdefghijkl

s is: abcdefghijkl
x is: 9

> bounds
abcdefghijklm

s is: abcdefghijklmn
x is: 1828716553

> bounds

abcdefghijkln
s is: abcdefghijkln

x is: 1845493769
> bounds

aaa... [a few thousand characters]
crashes shell

(User input)

= 0x6d000009

= 0x6e000009

Note: your results
may vary
(depending on
machine, compiler,
what else is
running, time of
day, etc.). This is
what makes C fun!

What does this kind of mistake
look like in a popular server?

3UVa CS216 Spring 2006 - Lecture 10: Pointers

Code Red

4UVa CS216 Spring 2006 - Lecture 10: Pointers

Reasons Not to Use C

• No bounds checking

–Programs are vulnerable to buffer
overflow attacks

• No automatic memory management

–Lots of extra work to manage memory
manually

–Mistakes lead to hard to find and fix bugs

• No support for data abstraction,
objects, exceptions

5UVa CS216 Spring 2006 - Lecture 10: Pointers

So, why would anyone
use C today?

6UVa CS216 Spring 2006 - Lecture 10: Pointers

Good Reasons to Use C
• Legacy Code: Linux, apache, etc.

• Simple, small

– Embedded systems, often only have a C compiler

• Low-level abstractions

– Performance: typically 20-30x faster than
interpreted Python

– Sometimes we need to manipulate machine state
directly: device drivers

• Lots of experience

– We know pitfalls for C programming

– Tools available that catch them

2

7UVa CS216 Spring 2006 - Lecture 10: Pointers

What are those arrows really?

s

“hello”

Stack Heap

s = “hello”

8UVa CS216 Spring 2006 - Lecture 10: Pointers

Pointers
• In Python, an object reference is
really just an address in memory

s

Stack Heap

0x80496f8

0x80496f0

0x80496f4

0x80496fb

0x8049700

0x8049704

0x8049708

0x80496f8

hell

o\0\0\0

9UVa CS216 Spring 2006 - Lecture 10: Pointers

Pointers in C

• Addresses in memory

• Programs can manipulate addresses
directly

&expr Evaluates to the address of the
location expr evaluates to

*expr Evaluates to the value stored in
the address expr evaluates to

10UVa CS216 Spring 2006 - Lecture 10: Pointers

&*%&@#*!
int f (void) {
int s = 1;
int t = 1;
int *ps = &s;
int **pps = &ps;
int *pt = &t;

**pps = 2;
pt = ps;
*pt = 3;
t = s;
}

s == 1, t == 1

s == 2, t == 1

s == 3, t == 3

s == 3, t == 1

11UVa CS216 Spring 2006 - Lecture 10: Pointers

Rvalues and Lvalues

What does = really mean?

int f (void) {
int s = 1;
int t = 1;
t = s;
t = 2;
}

left side of = is an “lvalue”
it evaluates to a location (address)!

right side of = is an “rvalue”
it evaluates to a value

There is an implicit *
when a variable is
used as an rvalue!

12UVa CS216 Spring 2006 - Lecture 10: Pointers

Parameter Passing in C

• Actual parameters are rvalues

void swap (int a, int b) {
int tmp = b; b = a; a = tmp;

}

int main (void) {
int i = 3;
int j = 4;
swap (i, j);
…

}
The value of i (3) is passed, not its location!

swap does nothing

3

13UVa CS216 Spring 2006 - Lecture 10: Pointers

Parameter Passing in C

void swap (int *a, int *b) {
int tmp = *b; *b = *a; *a = tmp;

}

int main (void) {
int i = 3;
int j = 4;
swap (&i, &j);
…

}

The value of &i is passed, which is the address of i

Is it possible to define swap in Python?

14UVa CS216 Spring 2006 - Lecture 10: Pointers

Beware!
int *value (void)

{
int i = 3;

return &i;
}

void callme (void)

{
int x = 35;

}

int main (void) {
int *ip;

ip = value ();
printf (“*ip == %d\n", *ip);

callme ();
printf ("*ip == %d\n", *ip);

}

*ip == 3

*ip == 35

But it could really be anything!

15UVa CS216 Spring 2006 - Lecture 10: Pointers

Manipulating Addresses

char s[6];
s[0] = ‘h’;
s[1] = ‘e’;
s[2]= ‘l’;
s[3] = ‘l’;
s[4] = ‘o’;
s[5] = ‘\0’;
printf (“s: %s\n”, s);

s: hello

expr1[expr2] in C is just
syntactic sugar for
*(expr1 + expr2)

16UVa CS216 Spring 2006 - Lecture 10: Pointers

Obfuscating C

char s[6];
*s = ‘h’;
*(s + 1) = ‘e’;
2[s] = ‘l’;
3[s] = ‘l’;
*(s + 4) = ‘o’;
5[s] = ‘\0’;
printf (“s: %s\n”, s);

s: hello

17UVa CS216 Spring 2006 - Lecture 10: Pointers

Fun with Pointer Arithmetic
int match (char *s, char *t) {

int count = 0;

while (*s == *t) { count++; s++; t++; }
return count;

}

int main (void)

{
char s1[6] = "hello";

char s2[6] = "hohoh";

printf ("match: %d\n", match (s1, s2));

printf ("match: %d\n", match (s2, s2 + 2));
printf ("match: %d\n", match (&s2[1], &s2[3]));

}

&s2[1]
�&(*(s2 + 1))
� s2 + 1

match: 1
match: 3

match: 2

The \0 is invisible!

18UVa CS216 Spring 2006 - Lecture 10: Pointers

Condensing match

int match (char *s, char *t) {
char *os = s;

while (*s++ == *t++);
return s – os - 1;

}

int match (char *s, char *t) {

int count = 0;

while (*s == *t) { count++; s++; t++; }
return count;

}

s++ evaluates to spre, but changes the value of s
Hence, C++ has the same value as C, but has
unpleasant side effects.

4

19UVa CS216 Spring 2006 - Lecture 10: Pointers

Quiz

• What does s = s++; do?

It is undefined!

If your C programming contains
it, a correct interpretation of your
program could make s = spre + 1,
s = 37, or blow up the computer.

20UVa CS216 Spring 2006 - Lecture 10: Pointers

Type Checking in C

• Java: only allow programs the
compiler can prove are type safe

• C: trust the programmer. If she
really wants to compare apples and
oranges, let her.

• Python: don’t trust the programmer
or compiler – check everything at
runtime.

Exception: run-time type errors for downcasts
and array element stores.

21UVa CS216 Spring 2006 - Lecture 10: Pointers

Type Checking

int main (void) {
char *s = (char *) 3;
printf ("s: %s", s);

}

Windows XP (SP 2)

22UVa CS216 Spring 2006 - Lecture 10: Pointers

Type Checking

int main (void) {
char *s = (char *) 3;
printf ("s: %s", s);

}

Windows 2000

(earlier versions of Windows would just crash the whole machine)

23UVa CS216 Spring 2006 - Lecture 10: Pointers

Python’s List Implementation
(A Whirlwind Tour)

http://svn.python.org/view/python/
trunk/Objects/listobject.c

24UVa CS216 Spring 2006 - Lecture 10: Pointers

listobject.c
/* List object implementation */

#include "Python.h"

#ifdef STDC_HEADERS
#include <stddef.h>
#else
#include <sys/types.h> /* For size_t */
#endif

/* Ensure ob_item has room for at least newsize elements, and set ob_size to newsize. If
newsize > ob_size on entry, the content of the new slots at exit is undefined heap trash; it's the
caller's responsiblity to overwrite them with sane values. The number of allocated elements may
grow, shrink, or stay the same. Failure is impossible if newsize <= self.allocated on entry,
although that partly relies on an assumption that the system realloc() never fails when passed a
number of bytes <= the number of bytes last allocated (the C standard doesn't guarantee this,
but it's hard to imagine a realloc implementation where it wouldn't be true).
Note that self->ob_item may change, and even if newsize is less than ob_size on entry.
*/
static int
list_resize(PyListObject *self, Py_ssize_t newsize)
{

…

We’ll get back to this…
but you should be convinced
that you are lucky to have been
using a language with automatic
memory management so far!

5

25UVa CS216 Spring 2006 - Lecture 10: Pointers

listobject.h
typedef struct {

PyObject_VAR_HEAD

/* Vector of pointers to list elements. list[0] is ob_item[0], etc. */

PyObject **ob_item;

/* ob_item contains space for 'allocated' elements. The number

* currently in use is ob_size.

* Invariants:

* 0 <= ob_size <= allocated

* len(list) == ob_size

* ob_item == NULL implies ob_size == allocated == 0

* list.sort() temporarily sets allocated to -1 to detect mutations.

*

* Items must normally not be NULL, except during construction when

* the list is not yet visible outside the function that builds it.

*/

Py_ssize_t allocated;

} PyListObject;
http://svn.python.org/view/python/trunk/Include/listobject.h

Now we know our answer to PS1 #6 (Python’ s list
implementation is continuous) is correct!

26UVa CS216 Spring 2006 - Lecture 10: Pointers

Append

int
PyList_Append(PyObject *op, PyObject *newitem)
{

if (PyList_Check(op) && (newitem != NULL))
return app1((PyListObject *)op, newitem);

PyErr_BadInternalCall();
return -1;

}

27UVa CS216 Spring 2006 - Lecture 10: Pointers

app1
static int
app1(PyListObject *self, PyObject *v)

{
Py_ssize_t n = PyList_GET_SIZE(self);

assert (v != NULL);
if (n == INT_MAX) {

PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");

return -1;
}

if (list_resize(self, n+1) == -1)

return -1;

Py_INCREF(v);
PyList_SET_ITEM(self, n, v);

return 0;
}

Checks there is
enough space to
add 1 more element
(and resizes if
necessary)

28UVa CS216 Spring 2006 - Lecture 10: Pointers

app1
static int
app1(PyListObject *self, PyObject *v)

{
Py_ssize_t n = PyList_GET_SIZE(self);

assert (v != NULL);
if (n == INT_MAX) {

PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");

return -1;
}

if (list_resize(self, n+1) == -1)

return -1;

Py_INCREF(v);
PyList_SET_ITEM(self, n, v);

return 0;
}

Complicated macro
for memory
management: needs to
keep track of how many
references there are to
object v

29UVa CS216 Spring 2006 - Lecture 10: Pointers

Set Item (in listobject.h)

/* Macro, trading safety for speed */
#define PyList_SET_ITEM(op, i, v) \

(((PyListObject *)(op))->ob_item[i] = (v))

Macro: text replacement, not
procedure calls.

PyList_SET_ITEM(self, n, v);

(((PyListObject *)(self))->ob_item[n] = (v))

30UVa CS216 Spring 2006 - Lecture 10: Pointers

Set Item (in listobject.h)

(((PyListObject *)(self))->ob_item[n] = (v))
typedef struct {

PyObject_VAR_HEAD

/* Vector of pointers to list elements. list[0] is ob_item[0], etc. */

PyObject **ob_item;

/* ob_item contains space for 'allocated' elements. The number

* currently in use is ob_size.

* Invariants: … */

Py_ssize_t allocated;
} PyListObject;

Now we can be (slightly) more confident that our
answer to PS1 #4 (append is O(1)) was correct!

6

31UVa CS216 Spring 2006 - Lecture 10: Pointers

list_resize
static int
list_resize(PyListObject *self, Py_ssize_t newsize)

{
...
/* This over-allocates proportional to the

list size, making room for additional growth.
The over-allocation is mild, but is enough to
give linear-time amortized behavior over
a long sequence of appends()... */

Monday’s class will look at list_resize

32UVa CS216 Spring 2006 - Lecture 10: Pointers

Charge

• This is complicated, difficult code

–We could (but won’t) spend the rest of the
semester without understanding it all
completely

• Now we trust PS1 #4

–But...only amortized O(1) – some appends
will be worse than average!

–We shouldn’t trust Python’s developers’
comments

• Exam 1 is out now, due Monday

–Work alone, read rules on first page
carefully

