
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 19:
Java Security

http://www.cs.virginia.edu/cs216

PS6 Submission:
Only to be eligible
for the “Byte Code
Wizard” awards. If
the web submission is
down, you can submit
(once) by email.

2UVa CS216 Spring 2006 - Lecture 19: Java Security

Running Mistyped Code

> java Simple
Exception in thread "main" java.lang.VerifyError:
(class: Simple, method: main signature:
([Ljava/lang/String;)V)
Register 0 contains wrong type

.method public static main([Ljava/lang/String;)V
…
iconst_2
istore_0
aload_0
iconst_2
iconst_3
iadd
…
return

.end method
> java –noverify Simple
result: 5

3UVa CS216 Spring 2006 - Lecture 19: Java Security

Running Mistyped Code

> java –noverify Simple
Unexpected Signal : EXCEPTION_ACCESS_VIOLATION

(0xc0000005) occurred at PC=0x809DCEB
Function=JVM_FindSignal+0x1105F

Library=C:\j2sdk1.4.2\jre\bin\client\jvm.dll

Current Java thread:

at Simple.main(Simple.java:7)
…

#

HotSpot Virtual Machine Error : EXCEPTION_ACCESS_VIOLATION
Error ID : 4F530E43505002EF
Please report this error at

http://java.sun.com/cgi-bin/bugreport.cgi
#

Java VM: Java HotSpot(TM) Client VM (1.4.2-b28 mixed mode)

.method public static main([Ljava/lang/String;)V
…

ldc 216

istore_0
aload_0
iconst_2
iconst_3
iadd
…

.end method

4UVa CS216 Spring 2006 - Lecture 19: Java Security

Java Security Architecture

Java VM

Operating System

Protected Resource

ClassLoader

Security
exception

Verify
Exception

JAR

Class

Verifier

5UVa CS216 Spring 2006 - Lecture 19: Java Security

JavaVM

• Interpreter for JVML programs

• Has complete access to host machine:
its just a C program running normally

• Bytecode verifier ensures some safety
properties, JavaVM must ensure rest:
–Type safety of run-time casts, array
assignments

–Memory safety: array bounds checking

–Resource use policy

6UVa CS216 Spring 2006 - Lecture 19: Java Security

Reference Monitors

2

7UVa CS216 Spring 2006 - Lecture 19: Java Security

Program Execution

Program
Monitor

Speakers

SuperSoaker 2000
Disk

Memory

Network

8UVa CS216 Spring 2006 - Lecture 19: Java Security

Program Execution

Program
Monitor

Speakers

SuperSoaker 2000
Disk

Memory

Network

Reference Monitor

9UVa CS216 Spring 2006 - Lecture 19: Java Security

Ideal Reference Monitor

1. Sees everything a program is about
to do before it does it

2. Can instantly and completely stop
program execution (or prevent
action)

3. Has no other effect on the program
or system

Can we build this?

Probably not unless we can build a time machine...

10UVa CS216 Spring 2006 - Lecture 19: Java Security

Ideal Reference Monitor

1. Sees everything a program is about
to do before it does it

2. Can instantly and completely stop
program execution (or prevent
action)

3. Has no other effect on the program
or system

Real

most things

limited

11UVa CS216 Spring 2006 - Lecture 19: Java Security

Operating Systems
• Provide reference monitors for most
security-critical resources
–When a program opens a file in Unix or
Windows, the OS checks that the principal
running the program can open that file

• Doesn’t allow different policies for
different programs

• No flexibility over what is monitored
–OS decides for everyone

–Hence, can’t monitor inexpensive
operations

12UVa CS216 Spring 2006 - Lecture 19: Java Security

Java Security Manager

• (Non-Ideal) Reference monitor

–Limits how Java executions can
manipulate system resources

• User/host application creates a
subclass of SecurityManager to define
a policy

3

13UVa CS216 Spring 2006 - Lecture 19: Java Security

JavaVM Policy Enforcment

From java.io.File:

public boolean delete() {

SecurityManager security =

System.getSecurityManager();

if (security != null) {

security.checkDelete(path);

}

if (isDirectory()) return rmdir0();

else return delete0();

}

[JDK 1.0 – JDK 1.1]

What could go seriously wrong with this?!

checkDelete throws a

SecurityExecption if the
delete would violate the policy

(re-thrown by delete)

14UVa CS216 Spring 2006 - Lecture 19: Java Security

HotJava’s Policy (JDK 1.1.7)

public class AppletSecurity

extends SecurityManager {

...

public synchronized

void checkDelete(String file)

throws Security Exception {

checkWrite(file);

}

}

15UVa CS216 Spring 2006 - Lecture 19: Java Security

AppletSecurity.checkWrite
(some exception handling code removed)

public synchronized void checkWrite(String file) {

if (inApplet()) {

if (!initACL) initializeACLs();

String realPath =

(new File(file)).getCanonicalPath();

for (int i = writeACL.length ; i-- > 0 ;) {

if (realPath.startsWith(writeACL[i])) return;

}

throw new AppletSecurityException

("checkwrite", file, realPath);

}

}
Note: no checking if not inApplet!
Very important this does the right thing.

16UVa CS216 Spring 2006 - Lecture 19: Java Security

inApplet
boolean inApplet() {

return inClassLoader();

}

Inherited from
java.lang.SecurityManager:

protected boolean inClassLoader() {

return

currentClassLoader() != null;

}

17UVa CS216 Spring 2006 - Lecture 19: Java Security

currentClassLoader
/**

Returns an object describing the most
recent class loader executing on the stack.

Returns the class loader of the most recent
occurrence on the stack of a method from a
class defined using a class loader; returns
null if there is no occurrence on the stack of
a method from a class defined using a class
loader.

*/

protected native ClassLoader currentClassLoader();

18UVa CS216 Spring 2006 - Lecture 19: Java Security

Recap
• java.io.File.delete calls

SecurityManager.checkDelete before deleting

• HotJava overrides SecurityManager with
AppletSecurity to set policy

• AppletSecurity.checkDelete calls
AppletSecurity.checkWrite

• AppletSecurity.checkWrite checks if any
method on stack has a ClassLoader

• If not no checks; if it does, checks ACL list

4

19UVa CS216 Spring 2006 - Lecture 19: Java Security

JDK 1.0 Trust Model

• When JavaVM loads a class from the
CLASSPATH, it has no associated
ClassLoader (can do anything)

• When JavaVM loads a class from
elsewhere (e.g., the web), it has an
associated ClassLoader

20UVa CS216 Spring 2006 - Lecture 19: Java Security

JDK Evolution

• JDK 1.1: Signed classes from
elsewhere and have no associated
ClassLoader

• JDK 1.2:

–Different classes can have different
policies based on ClassLoader

–Explict enable/disable/check privileges

–SecurityManager is now AccessController

21UVa CS216 Spring 2006 - Lecture 19: Java Security

What can go wrong?
• Java API doesn’t call right

SecurityManager checks (63 calls in
java.*)

–Font loading bug, synchronization

• ClassLoader is tricked into loading
external class as internal

• Bug in Bytecode Verifier can be
exploited to circumvent SecurityManager

• Policy is too weak (allows damaging
behavior)

22UVa CS216 Spring 2006 - Lecture 19: Java Security

Example Vulnerability

• Object Creation involves three steps:

new – create new object reference

dup – duplicate reference

invokespecial <> – calls constructor

new #14 <Class java.lang.StringBuffer>
dup
invokespecial #15 <Method java.lang.StringBuffer()>

23UVa CS216 Spring 2006 - Lecture 19: Java Security

Object Initialization
Vulnerability [lsd-pl.net]

class LSDbug extends SecurityClassLoader {

public LSDbug() {

try {

LSDbug(5);

} catch (SecurityException e) {

this.loadClass(…);

}
}

public LSDbug (int x) {

super(); // throws Security Exception

} }

this is used, but
not property
initialized!
Bytecode verifier
(old version) didn’t
make correct
checks

24UVa CS216 Spring 2006 - Lecture 19: Java Security

Verifier (should be) Conservative

JVML programs

Safe programs

Verifiable programs

(Slide from Nate
Paul’s ACSAC talk)

5

25UVa CS216 Spring 2006 - Lecture 19: Java Security

Complexity Increases Risk

JVML programs

Safe programs

Verifiable programs

Bug (Slide from Nate
Paul’s ACSAC talk)

26UVa CS216 Spring 2006 - Lecture 19: Java Security

Vulnerabilities in JavaVM

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9

V
u
ln
e
ra
b
il
it
ie
s
 R
e
p
o
rt
e
d

Years Since First ReleaseJuly 1996 July 2005

27UVa CS216 Spring 2006 - Lecture 19: Java Security

Where are They?

10API bugs

5DoS attacks (crash, consumption)

4Configuration

3Missing policy checks

2Other or unknown

8Class loading

12Verification

several of these were because of jsr complexity

28UVa CS216 Spring 2006 - Lecture 19: Java Security

Summary:
Low-level vs. Policy Security
• Low-level Code Safety:

–Type safety, memory safety, control flow
safety

–Needed to prevent malcode from
circumventing any policy mechanism

• Policy Security:
–Control access and use of resources
(files, network, display, etc.)

–Enforced by Java class

–Hard part is deciding on a good policy

29UVa CS216 Spring 2006 - Lecture 19: Java Security

Charge

• PS6 due Monday

–Questions 8-10 are open ended

–Lots of improvements possible, but
don’t need to find everything

–Token prize for best solutions to #8 and
#10 (and title of Byte Code Wizard!)

• Next class:

–How a hair dryer can break all this

–Starting with x86 assembly

