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CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 19:
Java Security

http://www.cs.virginia.edu/cs216

PS6 Submission:
Only to be eligible
for the “Byte Code 
Wizard” awards.  If 
the web submission is 
down, you can submit 
(once) by email.
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Running Mistyped Code

> java Simple
Exception in thread "main" java.lang.VerifyError: 
(class: Simple, method: main signature: 
([Ljava/lang/String;)V) 
Register 0 contains wrong type

.method public static main([Ljava/lang/String;)V
…
iconst_2    
istore_0    
aload_0     
iconst_2
iconst_3
iadd
…
return

.end method
> java –noverify Simple
result: 5
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Running Mistyped Code

> java –noverify Simple
Unexpected Signal : EXCEPTION_ACCESS_VIOLATION 

(0xc0000005) occurred at PC=0x809DCEB
Function=JVM_FindSignal+0x1105F

Library=C:\j2sdk1.4.2\jre\bin\client\jvm.dll

Current Java thread:

at Simple.main(Simple.java:7)
…

#

# HotSpot Virtual Machine Error : EXCEPTION_ACCESS_VIOLATION
# Error ID : 4F530E43505002EF
# Please report this error at

# http://java.sun.com/cgi-bin/bugreport.cgi
#

# Java VM: Java HotSpot(TM) Client VM (1.4.2-b28 mixed mode)

.method public static main([Ljava/lang/String;)V
…

ldc 216

istore_0    
aload_0     
iconst_2
iconst_3
iadd
…

.end method
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Java Security Architecture
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JavaVM

• Interpreter for JVML programs

• Has complete access to host machine: 
its just a C program running normally

• Bytecode verifier ensures some safety 
properties, JavaVM must ensure rest:
–Type safety of run-time casts, array 
assignments

–Memory safety: array bounds checking

–Resource use policy
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Reference Monitors
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Program Execution

Program
Monitor

Speakers

SuperSoaker 2000
Disk

Memory

Network

8UVa CS216 Spring 2006 - Lecture 19: Java Security

Program Execution
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Ideal Reference Monitor

1. Sees everything a program is about 
to do before it does it

2. Can instantly and completely stop 
program execution (or prevent 
action)

3. Has no other effect on the program 
or system

Can we build this? 

Probably not unless we can build a time machine...
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Ideal Reference Monitor

1. Sees everything a program is about 
to do before it does it

2. Can instantly and completely stop 
program execution (or prevent 
action)

3. Has no other effect on the program 
or system

Real

most things

limited
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Operating Systems
• Provide reference monitors for most 
security-critical resources
–When a program opens a file in Unix or 
Windows, the OS checks that the principal 
running the program can open that file

• Doesn’t allow different policies for 
different programs

• No flexibility over what is monitored
–OS decides for everyone

–Hence, can’t monitor inexpensive 
operations
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Java Security Manager

• (Non-Ideal) Reference monitor

–Limits how Java executions can 
manipulate system resources

• User/host application creates a 
subclass of SecurityManager to define 
a policy
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JavaVM Policy Enforcment

From java.io.File:

public boolean delete() {

SecurityManager security =

System.getSecurityManager();

if (security != null) {

security.checkDelete(path);

}

if (isDirectory()) return rmdir0();

else return delete0();

}

[JDK 1.0 – JDK 1.1]

What could go seriously wrong with this?!

checkDelete throws a 

SecurityExecption if the 
delete would violate the policy

(re-thrown by delete)
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HotJava’s Policy (JDK 1.1.7)

public class AppletSecurity

extends SecurityManager {

...

public synchronized

void checkDelete(String file) 

throws Security Exception {

checkWrite(file);

}

}
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AppletSecurity.checkWrite
(some exception handling code removed)

public synchronized void checkWrite(String file) {

if (inApplet()) {

if (!initACL) initializeACLs();

String realPath = 

(new File(file)).getCanonicalPath();

for (int i = writeACL.length ; i-- > 0 ;) {

if (realPath.startsWith(writeACL[i])) return;

}

throw new AppletSecurityException

("checkwrite", file, realPath);

}

}
Note: no checking if not inApplet!
Very important this does the right thing.
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inApplet
boolean inApplet() {

return inClassLoader();

}

Inherited from 
java.lang.SecurityManager:

protected boolean inClassLoader() {

return 

currentClassLoader() != null;

}
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currentClassLoader
/**

Returns an object describing the most 
recent class loader executing on the stack.

Returns  the class loader of the most recent 
occurrence on the stack of a method from a 
class defined using a class loader; returns 
null if there is no occurrence on the stack of 
a method from a class defined using a class 
loader.

*/

protected native ClassLoader currentClassLoader();
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Recap
• java.io.File.delete calls 

SecurityManager.checkDelete before deleting

• HotJava overrides SecurityManager with 
AppletSecurity to set policy

• AppletSecurity.checkDelete calls 
AppletSecurity.checkWrite

• AppletSecurity.checkWrite checks if any 
method on stack has a ClassLoader

• If not no checks; if it does, checks ACL list
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JDK 1.0 Trust Model

• When JavaVM loads a class from the 
CLASSPATH, it has no associated 
ClassLoader (can do anything)

• When JavaVM loads a class from 
elsewhere (e.g., the web), it has an 
associated ClassLoader
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JDK Evolution

• JDK 1.1: Signed classes from 
elsewhere and have no associated 
ClassLoader

• JDK 1.2: 

–Different classes can have different 
policies based on ClassLoader

–Explict enable/disable/check privileges 

–SecurityManager is now AccessController
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What can go wrong?
• Java API doesn’t call right 

SecurityManager checks (63 calls in 
java.*)

–Font loading bug, synchronization

• ClassLoader is tricked into loading 
external class as internal

• Bug in Bytecode Verifier can be 
exploited to circumvent SecurityManager

• Policy is too weak (allows damaging 
behavior)
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Example Vulnerability

• Object Creation involves three steps:

new – create new object reference

dup – duplicate reference

invokespecial <> – calls constructor

new #14 <Class java.lang.StringBuffer>
dup
invokespecial #15 <Method java.lang.StringBuffer()>
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Object Initialization 
Vulnerability [lsd-pl.net]

class LSDbug extends SecurityClassLoader {

public LSDbug() {

try { 

LSDbug(5); 

} catch (SecurityException e) { 

this.loadClass(…);

}
}

public LSDbug (int x) {

super();  // throws Security Exception

} }

this is used, but 
not property 
initialized!
Bytecode verifier 
(old version) didn’t
make correct 
checks
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Verifier (should be) Conservative

JVML programs

Safe programs

Verifiable programs

(Slide from Nate 
Paul’s ACSAC talk)
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Complexity Increases Risk

JVML programs

Safe programs

Verifiable programs

Bug (Slide from Nate 
Paul’s ACSAC talk)
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Vulnerabilities in JavaVM
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Where are They?

10API bugs

5DoS attacks (crash, consumption)

4Configuration

3Missing policy checks

2Other or unknown

8Class loading

12Verification

several of these were because of jsr complexity
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Summary:
Low-level vs. Policy Security
• Low-level Code Safety:

–Type safety, memory safety, control flow 
safety

–Needed to prevent malcode from 
circumventing any policy mechanism

• Policy Security:
–Control access and use of resources 
(files, network, display, etc.)

–Enforced by Java class

–Hard part is deciding on a good policy
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Charge

• PS6 due Monday

–Questions 8-10 are open ended

–Lots of improvements possible, but 
don’t need to find everything

–Token prize for best solutions to #8 and 
#10 (and title of Byte Code Wizard!)

• Next class: 

–How a hair dryer can break all this

–Starting with x86 assembly


