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Recap
• Big-O: the set O(f) is the set of 
functions that grow no faster than f

–There exist positive integers c, n0 > 0 such 

that f(n) ≤≤≤≤ cg(n) for all n ≥ n0.

• Omega (Ω): the set Ω(f) is the set of 

functions that grow no slower than f

–There exist positive integers c, n0 > 0 s.t. 

f(n) ≥≥≥≥ cg(n) for all n ≥ n0.
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Question from last class

Given f ∈ O (h) and g ∉ O (h) which of 

these are true:

a. For all positive integers m, f (m) < g (m).

Proved false by counterexample

Statement a is false, so opposite of a 
must be true.  What is the opposite 
of statement a?

a ≡ ∀f ∈ O (h) ∀ g ∉ O (h) ∀m ∈ Z+, f (m) < g (m).
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Question from last class

Given f ∈ O (h) and g ∉ O (h) which of 

these are true:

a. For all positive integers m, f (m) < g (m).

a ≡ ∀f ∈ O (h) ∀ g ∉ O (h) ∀m ∈ Z+, f (m) < g (m).

a is false ⇒⇒⇒⇒ not a ≡

∃∃∃∃ f ∈ O (h) ∃∃∃∃ g ∉ O (h) ∃∃∃∃ m ∈ Z+, f (m) ≥≥≥≥ g (m).

(this is exactly our counterexample)

Note this is very different from a claim like,
∀∀∀∀ f ∈ O (h) ∀∀∀∀ g ∉ O (h) ∃∃∃∃ m ∈ Z+, f (m) ≥≥≥≥ g (m).
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O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Ω(n2)

Faster Growing

What else might be useful?
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Theta (“Order of”)
• Intuition: the set Θ(f ) is the set of 
functions that grow as fast as f

• Definition: f (n) ∈ Θ (g (n)) if and only 
if both: 
1. f (n) ∈ O (g (n))

and 2. f (n) ∈ Ω (g (n))

–Note: we do not have to pick the same c 
and n0 values for 1 and 2

• When we say, “f is order g” that means 
f (n) ∈ Θ (g (n))
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O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Ω(n2)

Faster Growing

Tight Bound Theta (Θ)

Θ(n2)
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Little-oh (o)

• Definition: f ∈ o (g): for all positive 
constants c there is a value n0 such 

that f(n) ≤≤≤≤ cg(n) for all n ≥ n0.

• Compare: f ∈ O (g): there are 

positive constants c and n0 such that

f(n) ≤≤≤≤ cg(n) for all n ≥ n0.
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O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Ω(n2)

Faster Growing

Little-Oh (o)

Θ(n2)o(n2)
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Summary

• Big-O: there exist c, n0 > 0 such that

f(n) ≤≤≤≤ cg(n) for all n ≥ n0.

• Omega (Ω): there exist c, n0 > 0 s.t. 

f(n) ≥≥≥≥ cg(n) for all n ≥ n0.

• Theta (Θ): both O and Ω are true

• Litte-o: there exists n0 > 0 such that 

for all c > 0, f(n) ≤≤≤≤ cg(n) for all n ≥ n0.
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(Trick) Question
If wealth(n) is your net worth n days 
after today, would you prefer:

a. wealth(n) ∈ O(n)

b. wealth(n) ∈ O(n2)

c. wealth(n) ∈ o(n)

d. wealth(n) ∈ Ω (n)

Which of these are 
satisfied by 

wealth(n) = 0.0001n?
Which is better:

wealth(n) = 100000000

wealth(n) = 0.0001n
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Levels of Abstraction
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Course Goal 3

Understand how a program executes 
at levels of abstraction ranging from 
a high-level programming language 
to machine memory. 

From Lecture 1…
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Levels of Abstraction: Program
Real World Problem

High-Level Program

Machine Instructions

Physical 
Processor
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Tic-Tac-Toe

Play Tic-Tac-Toe

Tinker Toy Computer

Tic-Tac-Toe
Strategy

Low-level
description

http://www.rci.rutgers.edu/~cfs/472_html/Intro/TinkertoyComputer/TinkerToy.html
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Sequence Alignment: Program

Genome Similarity

High-Level Program

Low-Level Program

Electrons, etc.
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Levels of Abstraction: Data
Real World Thing(s)

Data Abstraction

Low-Level 
Data Structure

Electrons, etc.
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Bits
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Levels of Abstraction: PS1
Genome

Genome

Python List

Electrons, etc.
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List Abstract Datatype

• Ordered collection datatype: 

<x0, x1, ..., xn-1>

• Operations for manipulating and 
observing elements of list

21UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

List Operations (Ch 3)
• Access (L, i): returns the ith element of L

• Length (L): returns the number of 
elements in L

• Concat (L, M): returns the result of 

concatenating L with M. (Elements <l0, 

l1, ..., l|L|-1, m0, m1 ..., m|M|-1, > ) 

• MakeEmptyList(): returns <>

• IsEmptyList(L): returns true iff |L| = 0.

Is this a sufficient list of List operations?
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Constructing Lists
• The book’s list operations have no way 
of constructing any list other than the 
empty list!

• We need at least:

– Append (L, e): returns the result of 

appending e to L: <l0, l1, ..., l|L|-1, e >

23UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Revised List Operations
• Access (L, i): returns L[i]

• Length (L): returns |L|

• Concat (L, M): returns the result of 
concatenating L with M.

• MakeEmptyList(): returns <>

• IsEmptyList(L): returns true iff |L| = 0.

• Append (L, e): returns the result of 

appending e to L: <l0, l1, ..., l|L|-1, e >

Are all of these operations necessary?
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Can 
define 

using 

Append, 
Access, 
Length
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Necessary List Operations

• Access (L, i): returns L[i]

• Length (L): returns |L|

• MakeEmptyList(): returns <>

• Append (L, e): returns the result of 

appending e to L: <l0, l1, ..., l|L|-1, e >

Note that we have defined an immutable 
list.  There are no operations for changing 
the value of a list, only making new lists.
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Continuous Representation

1

2

3

L

Length:

Data:

3
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Linked Representation
L

Node

Info:

Next:

1

Node

Info:

Next:

2 Info:

Next:

3

We need a special value for Next 
when there is no Next node:
Book: Λ C: 0
Python: None Scheme, Java: null

Node
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Necessary List Operations

• Access (L, i): returns L[i]

• Length (L): returns |L|

• MakeEmptyList(): returns <>

• Append (L, e): returns the result of 

appending e to L: <l0, l1, ..., l|L|-1, e >

Can we implement all of these with 
both representation choices?
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Length

1

2

3

L

Length:

Data:

3

def Length(L):
return L.Length

Continuous

L Info:

Next:

1

2

3

def Length(L):
if L == None:
return 0
return 1 + \
Length(L.Next)

Linked
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Which Representation is Better?

• Time of Length: (n is number of 
elements)

–Continuous: O(1)

–Linked: O(n)

–Are these bounds tight? (Θ)

• What about other operations?

• Other factors to consider?

Will explore this more next week
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Python Lists
• Provide necessary operations:

– Access (L, i): L[i]

– Length (L): len(L)

– MakeEmptyList(): L = []

– Append (L, e): L.append (e)
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Python List Operations

• insert: L.insert (i, e)

Returns <l0, l1, ..., li-1, e, li, ..., l|L|-1>

• concatenation: L + M

Returns <l0, l1, ..., l|L|-1, m0, m1, ..., m|M|-1 >

• slicing: L[from:to]

Returns <lfrom, lfrom + 1, ..., lto-1 >

• Lots more
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How are they implemented?

• PS1

–Try to “guess” by measuring 
performance of different operations

–Unless you can do exhaustive 
experiments (hint: you can’t) you can’t 
be assured of a correct guess

• Around PS4:

–Look an lower abstraction level: C code 
for the Python List implementation
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Charge
• Problem Set 1 due Monday

• Point of PSs is to learn: 

– You can (and should) discuss your approaches and ideas 
with anyone

– You should discuss and compare your answers to 1-6 with 

your assigned partner and produce a consensus best 
answer that you both understand and agree on

• Take advantage of Small Hall On-Call Hours:
• Wednesday 7-8:30pm

• Thursday 4-5:30pm, 6:30-8:30pm

• Friday 11am-12:30, 3:30-5pm

• Saturdays 3-6pm

• Sunday 3:30-9:30pm

• Monday: Dynamic Programming


