
1

CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 3:

Levels of
Abstraction

http://www.cs.virginia.edu/cs216 2UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Menu

• Orders of Growth: O, Ω, Θ, o

• Levels of Abstraction

• List Datatype

3UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Recap
• Big-O: the set O(f) is the set of
functions that grow no faster than f

–There exist positive integers c, n0 > 0 such

that f(n) ≤≤≤≤ cg(n) for all n ≥ n0.

• Omega (Ω): the set Ω(f) is the set of

functions that grow no slower than f

–There exist positive integers c, n0 > 0 s.t.

f(n) ≥≥≥≥ cg(n) for all n ≥ n0.

4UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Question from last class

Given f ∈ O (h) and g ∉ O (h) which of

these are true:

a. For all positive integers m, f (m) < g (m).

Proved false by counterexample

Statement a is false, so opposite of a
must be true. What is the opposite
of statement a?

a ≡ ∀f ∈ O (h) ∀ g ∉ O (h) ∀m ∈ Z+, f (m) < g (m).

5UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Question from last class

Given f ∈ O (h) and g ∉ O (h) which of

these are true:

a. For all positive integers m, f (m) < g (m).

a ≡ ∀f ∈ O (h) ∀ g ∉ O (h) ∀m ∈ Z+, f (m) < g (m).

a is false ⇒⇒⇒⇒ not a ≡

∃∃∃∃ f ∈ O (h) ∃∃∃∃ g ∉ O (h) ∃∃∃∃ m ∈ Z+, f (m) ≥≥≥≥ g (m).

(this is exactly our counterexample)

Note this is very different from a claim like,
∀∀∀∀ f ∈ O (h) ∀∀∀∀ g ∉ O (h) ∃∃∃∃ m ∈ Z+, f (m) ≥≥≥≥ g (m).

6UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Ω(n2)

Faster Growing

What else might be useful?

2

7UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Theta (“Order of”)
• Intuition: the set Θ(f) is the set of
functions that grow as fast as f

• Definition: f (n) ∈ Θ (g (n)) if and only
if both:
1. f (n) ∈ O (g (n))

and 2. f (n) ∈ Ω (g (n))

–Note: we do not have to pick the same c
and n0 values for 1 and 2

• When we say, “f is order g” that means
f (n) ∈ Θ (g (n))

8UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Ω(n2)

Faster Growing

Tight Bound Theta (Θ)

Θ(n2)

9UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Little-oh (o)

• Definition: f ∈ o (g): for all positive
constants c there is a value n0 such

that f(n) ≤≤≤≤ cg(n) for all n ≥ n0.

• Compare: f ∈ O (g): there are

positive constants c and n0 such that

f(n) ≤≤≤≤ cg(n) for all n ≥ n0.

10UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

O(n3)

O(n2)

f(n) = n2.5

f(n) = 12n2 + n

f(n) = n3.1 – n2

Ω(n2)

Faster Growing

Little-Oh (o)

Θ(n2)o(n2)

11UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Summary

• Big-O: there exist c, n0 > 0 such that

f(n) ≤≤≤≤ cg(n) for all n ≥ n0.

• Omega (Ω): there exist c, n0 > 0 s.t.

f(n) ≥≥≥≥ cg(n) for all n ≥ n0.

• Theta (Θ): both O and Ω are true

• Litte-o: there exists n0 > 0 such that

for all c > 0, f(n) ≤≤≤≤ cg(n) for all n ≥ n0.

12UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

(Trick) Question
If wealth(n) is your net worth n days
after today, would you prefer:

a. wealth(n) ∈ O(n)

b. wealth(n) ∈ O(n2)

c. wealth(n) ∈ o(n)

d. wealth(n) ∈ Ω (n)

Which of these are
satisfied by

wealth(n) = 0.0001n?
Which is better:

wealth(n) = 100000000

wealth(n) = 0.0001n

3

13UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Levels of Abstraction

14UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Course Goal 3

Understand how a program executes
at levels of abstraction ranging from
a high-level programming language
to machine memory.

From Lecture 1…

15UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Levels of Abstraction: Program
Real World Problem

High-Level Program

Machine Instructions

Physical
Processor

P
h
y
s
ic
a
l

W
o
rld

V
ir
tu
a
l

W
o
rl
d

16UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Tic-Tac-Toe

Play Tic-Tac-Toe

Tinker Toy Computer

Tic-Tac-Toe
Strategy

Low-level
description

http://www.rci.rutgers.edu/~cfs/472_html/Intro/TinkertoyComputer/TinkerToy.html

17UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Sequence Alignment: Program

Genome Similarity

High-Level Program

Low-Level Program

Electrons, etc.

P
h
y
s
ic
a
l

W
o
rld

V
ir
tu
a
l

W
o
rl
d Align.py

P
y
th
o
n

In
te
rp
re
te
r

18UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Levels of Abstraction: Data
Real World Thing(s)

Data Abstraction

Low-Level
Data Structure

Electrons, etc.

P
h
y
s
ic
a
l

W
o
rld

V
ir
tu
a
l

W
o
rl
d

Bits

4

19UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Levels of Abstraction: PS1
Genome

Genome

Python List

Electrons, etc.

P
h
y
s
ic
a
l

W
o
rld

V
ir
tu
a
l

W
o
rl
d

Bits

20UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

List Abstract Datatype

• Ordered collection datatype:

<x0, x1, ..., xn-1>

• Operations for manipulating and
observing elements of list

21UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

List Operations (Ch 3)
• Access (L, i): returns the ith element of L

• Length (L): returns the number of
elements in L

• Concat (L, M): returns the result of

concatenating L with M. (Elements <l0,

l1, ..., l|L|-1, m0, m1 ..., m|M|-1, >)

• MakeEmptyList(): returns <>

• IsEmptyList(L): returns true iff |L| = 0.

Is this a sufficient list of List operations?

22UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Constructing Lists
• The book’s list operations have no way
of constructing any list other than the
empty list!

• We need at least:

– Append (L, e): returns the result of

appending e to L: <l0, l1, ..., l|L|-1, e >

23UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Revised List Operations
• Access (L, i): returns L[i]

• Length (L): returns |L|

• Concat (L, M): returns the result of
concatenating L with M.

• MakeEmptyList(): returns <>

• IsEmptyList(L): returns true iff |L| = 0.

• Append (L, e): returns the result of

appending e to L: <l0, l1, ..., l|L|-1, e >

Are all of these operations necessary?

E
a
s
y
 to

 d
e
fin

e

u
s
in
g
 L
e
n
g
th

Can
define

using

Append,
Access,
Length

24UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Necessary List Operations

• Access (L, i): returns L[i]

• Length (L): returns |L|

• MakeEmptyList(): returns <>

• Append (L, e): returns the result of

appending e to L: <l0, l1, ..., l|L|-1, e >

Note that we have defined an immutable
list. There are no operations for changing
the value of a list, only making new lists.

5

25UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Continuous Representation

1

2

3

L

Length:

Data:

3

26UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Linked Representation
L

Node

Info:

Next:

1

Node

Info:

Next:

2 Info:

Next:

3

We need a special value for Next
when there is no Next node:
Book: Λ C: 0
Python: None Scheme, Java: null

Node

27UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Necessary List Operations

• Access (L, i): returns L[i]

• Length (L): returns |L|

• MakeEmptyList(): returns <>

• Append (L, e): returns the result of

appending e to L: <l0, l1, ..., l|L|-1, e >

Can we implement all of these with
both representation choices?

28UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Length

1

2

3

L

Length:

Data:

3

def Length(L):
return L.Length

Continuous

L Info:

Next:

1

2

3

def Length(L):
if L == None:
return 0
return 1 + \
Length(L.Next)

Linked

29UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Which Representation is Better?

• Time of Length: (n is number of
elements)

–Continuous: O(1)

–Linked: O(n)

–Are these bounds tight? (Θ)

• What about other operations?

• Other factors to consider?

Will explore this more next week

30UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Python Lists
• Provide necessary operations:

– Access (L, i): L[i]

– Length (L): len(L)

– MakeEmptyList(): L = []

– Append (L, e): L.append (e)

6

31UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Python List Operations

• insert: L.insert (i, e)

Returns <l0, l1, ..., li-1, e, li, ..., l|L|-1>

• concatenation: L + M

Returns <l0, l1, ..., l|L|-1, m0, m1, ..., m|M|-1 >

• slicing: L[from:to]

Returns <lfrom, lfrom + 1, ..., lto-1 >

• Lots more

32UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

How are they implemented?

• PS1

–Try to “guess” by measuring
performance of different operations

–Unless you can do exhaustive
experiments (hint: you can’t) you can’t
be assured of a correct guess

• Around PS4:

–Look an lower abstraction level: C code
for the Python List implementation

33UVa CS216 Spring 2006 - Lecture 3: Levels of Abstraction

Charge
• Problem Set 1 due Monday

• Point of PSs is to learn:

– You can (and should) discuss your approaches and ideas
with anyone

– You should discuss and compare your answers to 1-6 with

your assigned partner and produce a consensus best
answer that you both understand and agree on

• Take advantage of Small Hall On-Call Hours:
• Wednesday 7-8:30pm

• Thursday 4-5:30pm, 6:30-8:30pm

• Friday 11am-12:30, 3:30-5pm

• Saturdays 3-6pm

• Sunday 3:30-9:30pm

• Monday: Dynamic Programming

