CS216: Program and Data Representation

University of Virginia Computer Science
Spring 2006 David Evans

Lecture 9:
Low-Level
Programming

http://www.cs.virginia.edu/cs216

Menu
e Complexity Question
e Low-Level Programming

Exam 1
Out Wednesday, Due Monday, 11:01AM
Covers everything through Lecture 8
Expect questions on:
order notation, algorithm analysis, lists,
trees, recursive programming, dynamic
programming, greedy algorithms
Not on complexity classes (Lecture 8)

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Problem Classes if P = NP:

Sequence
Alignment: O(n?)

How many problems

are in the ®(n) class?
infinite

How many problems

are in P but not

in the ®(n) class?

NP-Complete

Note the > Ol
infinite

P H bl

Complete ow m;:ybpr;o etms

class is a are in ut no

ring - others n r‘.?infinil:e

are circles

Interval
Scheduling:
2 Subset Sum
O(n log n) 3SAT
UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming 3

Is it ever useful to be
confident that a problem is
hard?

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Knapsack Cipher
[Merkle & Hellman, 1978]
e Public Key: A = {qa,, a,,...,a,}
- Set of integers
e Plain Text: x,,...x,

x;=0o0r1
e Cipher Text: n
5= xa
i=1
UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming 5

Subset Sum is Hard

e Given s and A it is NP-Complete to
find a subset of A that sums to s

e Need to make decrypting each (for
recipient with the “private key")

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Superincreasing Set

e Pick {a,, a,.....a,} is a superincreasing
sequence
i—1
ai > Z aj
j=1

How hard is subset sum if A
is superincreasing?

Knapsack Ciphers

e Private Key = {p,, p,,....p,}
- A superincreasing sequence
-Values M and W:

M>bi
i=1
GCD(M ,W) =1

e Public Key = {a,, ay,..., a,}
ai = (biW)mod M

UVa €S216 Spring 2006 - Lecture 9: Low-Level Programming 7

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Flawed Security Argument

e Subset Sum is NP-Complete

e Breaking knapsack cipher involves
solving a subset sum problem

e Therefore, knapsack cipher is secure

Flaw: NP-Complete means there is no
fast general solution. Some instances

may be solved quickly.
(Note: Adi Shamir found a way of breaking
knapsack cipher [1982])

Levels of Abstraction: Program

(Real World Problem]—\

[High-LeveI Program]

o —
52 52
S8 £ S
o =
a S S
[Machine Instructions]

[] Physical]/

Processor

| From Lecture 3 |

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming 9

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

10

Crossing-Levels

Python Program
C Program

x86 Instructions

Python
Interpreter

i

x86 Instructions

Programming Languages

UVa €S216 Spring 2006 - Lecture 9: Low-Level Programming 11

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

12

Fortran (1954), IBM (Backus)

LISP (1957) Algol (1958)

BASIC (1963)

CPL (1963), U Cambridge
Scheme (1975)

Combined Programming Languag
Simula (1967)
BCPL (1967), MIT

Basic Combined Programming Language

ABC (~1980) B (1969), Bell Labs Smaljalk
'

(1971), PARC
C (1970), Bell Lab

=+ 983), Bell Labs Objective C
Python (1990), .
Guido van Rossum Programming Languages

Java (1995) Phylogeny (Simplified)

UVa €S216 Spring 2006 - Lecture 9: Low-Level Programming 13

“Jamais Jamais Jamais” from Harmonice Musices
Odhecaton A. Printed by Ottaviano Dei Petrucci in
1501 (first music with movable type)

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming

Why so many
Programming Languages?

UVa €S216 Spring 2006 - Lecture 9: Low-Level Programming 14

v At iy

@mz « ALY

¢ o
g st]
It T ey

AT Yo i — OV

S A== -
= PR
o S

ERo b et
o L e

e

|
RETy T3

iy

J S Bach, “Coffee Cantata”,

“Jamais Jamais Jamais” from
Harmonice Musices Odhecaton A. BWV 211 (1732)
(1 501) www.npj.com/homepage/teritowe/jsbhand. html

15
Modern Music Notation
&
@
i
I
Roman Haubenstock- John Cage, Fontana Mix
Ramati, Concerto a Tre
http://ww i or i 1/
UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming 17

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming 16

4335
: o AT GG B cqumiATRS OF TSGR
~
(Hkege
TAGET
OIYRIGAT ©4960 8T AN, B56 DL, 373 BAKATES, Y AT.10016
E_ BOTE: TAE TETWE Of DS WORK 5 THE TuTAL LEioTH o S0E0TES D

BEGAIDS of TS PEARAMAEE. ATHUTICE, Y, AUSUST 29,1958,
THE TITLE WAS 433" AW TIE THEES PARTS WERS 38, 140,49
119, TIWAS PERFQRNED BY RAVID TUDOR , BIRIST, W 201~
iy DORUIEALS of DTS B Cuosifa THE EEMDS Y CBE-

TACET 6, TEXEPWD LID. AFTE I WODSToK, BRRRAMNEE, A
WP BX PROPATIOAL NUTATIUS WAS A9 FoR TBWIS RRORS.
4 1T THE THELATRY of TRENOTARTIS WELE 10, 27540 1
07, FOWEVES | THE WoRK WAY 66 FEBFORMED Y ANY BISPIGS

m TALISTE) Ap TRE MOVEASITS MAY LAST Ay LESTR of TIHE.

Fu, IRWIN KRsKE

TACET

UVa €S216 Spring 2006 - Lecture 9: Low-Level Programming 18

Thought and Action

e Languages change the way we think
- Scheme: think about procedures
- BASIC: think about GOTO

- Algol, Pascal: think about assignments, control
blocks

- Java: think about types, squiggles, exceptions
- Python?
e Languages provide abstractions of machine
resources
- Hide dangerous/confusing details: memory

locations, instruction opcodes, number
representations, calling conventions, etc.

UVa €S216 Spring 2006 - Lecture 9: Low-Level Programming 19

Abstractions

e Higher level abstractions
- Python, Java, BASIC, ...
- Easier to describe abstract algorithms
- But, cannot manipulate low-level machine
state
¢ How are things stored in memory?
e Opportunities for optimization lost
e Lower level abstractions
- C, C++, JVML, MSIL, Assembly, ...
- Harder to describe abstraction algorithms

- Provides programmer with control over low-
level machine state

UVa €S216 Spring 2006 - Lecture 9: Low-Level Programming 20

Biggest Single Difference:
Memory Management

¢ High-level languages (Python, Java)
provide automatic memory
management
- Programmer has no control over how

memory is allocated and reclaimed

- Garbage collector reclaims storage

e Low-level languages (C, Assembly)
leave it up to the programmer to
manage memory

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming 21

Fortran (1954), IBM (Backus)

LISP (1957) Algol (1958)

BASIC (1963) CPL (1963), U Cambridge
Scheme (1975) combined Programming Languag
/

Simula (1967)
BCPL (1967), MIT

Basic Combined Programming Language

ABC (~1980) B (1969), Bell Labs Smaljfalk
/

C (1970), Bell Labs
983), Bell Labs Objective C

Python (1990), .
Guido van Rossum Programming Languages

Java (1995) Phylogeny (Simplified)

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming 22

C Programming Language
e Developed to build Unix OS

e Main design considerations:

- Compiler size: needed to run on PDP-11
with 24KB of memory (Algol60 was too big
to fit)

- Code size: needed to implement the whole
0OS and applications with little memory

- Performance, Portability
e Little (if any consideration):
- Security, robustness, maintainability

UVa €S216 Spring 2006 - Lecture 9: Low-Level Programming 23

C Language

¢ No support for:
- Array bounds checking
- Null dereferences checking
- Data abstraction, subtyping, inheritance
- Exceptions
- Automatic memory management

e Program crashes (or worse) when
something bad happens

¢ Lots of syntactically legal programs
have undefined behavior

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming 24

Example C Program

void test (int x) {
while (x = 1) {
printf ("I'm an imbecile!”);
X=X+1;
¥
¥

Weak type checking:
In C, there is no boolean type.

Any value can be the test expression.

x = 1 assigns 1 to x, and has the value 1.

In Java:
void test (int x) {
while (x = 1) {
printf ("I'm an imbecile!”)
X=Xx+1;
¥
¥

> javac Test.java
Test.java:21: incompatible typ
found :int

required: boolean

Fortran (1954) LET
e
Algol (1958)

CPL (1963), U Cambridge H
Combined Programming Language

BCPL (1967), MIT :
Basic Combined Programming Language

B (1969), Bell Labs =

C (1970), Bell Labs =
—

C++ (1983), Bell Labs =

while (x = 1) {

I'm an imbecile!
I'm an imbecile!
I'm an imbecile!
I'm an imbecile!

1 error

Java (1995), Sun =

UVa CS216 Spring 2006 - Leclg?é iﬂ&mge&i!ﬁégramming 25
T A i

UVa €S216 Spring 2006 - Lecture 9: Low-Level Programming 26

= VS, =

Why does Python use = for assignment?
e Algol (designed for elegance for presenting
algorithms) used :=

CPL and BCPL based on Algol, used :=

e Thompson and Ritchie had a small computer to
implement B, saved space by using = instead

e C was successor to B (also on small computer)

e C++'s main design goal was backwards
compatibility with C

e Python was designed to be easy for C and C++
programmers to learn

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming 27

C Bounds Non-Checking

int main (void) {
intx=9;
char s[4];

gets(s);
printf ("s is: %s\n", s);
printf ("x is: %d\n", x);

Note: your results
may vary
(depending on
machine, compiler,
what else is
running, time of
day, etc.). Thisis
what makes C fun!

> gcc -0 bounds bounds.c

> bounds

abcdefghijkl

sis: abcdefghi}kl\
xis: 9

> bounds

abcdefghijkim

s is: abcdefghijklmn

X is: 1828716553 _

> bounds = 0x6d000009
abcdefghijkin

s is: abcdefghijkin

x is: 1845493769 = (Qx6e000009
> bounds T

aaa... [a few thousand characters]
crashes shell

UVa CS216 Spring 2006 - Lecture 9: Low-Level Programming 28

Charge

e Wednesday: Exam 1 is out, due
Monday

¢ No regularly scheduled Small Hall
and office hours while Exam 1 is out

UVa €S216 Spring 2006 - Lecture 9: Low-Level Programming 29

