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Spring 2006 David Evans

Lecture 9:
Low-Level
Programming
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Menu
e Complexity Question
e Low-Level Programming

Exam 1
Out Wednesday, Due Monday, 11:01AM
Covers everything through Lecture 8
Expect questions on:
order notation, algorithm analysis, lists,
trees, recursive programming, dynamic
programming, greedy algorithms
Not on complexity classes (Lecture 8)
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Problem Classes if P = NP:
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Is it ever useful to be
confident that a problem is
hard?
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Knapsack Cipher
[Merkle & Hellman, 1978]
e Public Key: A = {qa,, a,,...,a,}
- Set of integers
e Plain Text: x,,...x,

x;=0o0r1
e Cipher Text: n
5= xa
i=1
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Subset Sum is Hard

e Given s and A it is NP-Complete to
find a subset of A that sums to s

e Need to make decrypting each (for
recipient with the “private key")
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Superincreasing Set

e Pick {a,, a,.....a,} is a superincreasing
sequence
i—1
ai > Z aj
j=1

How hard is subset sum if A
is superincreasing?

Knapsack Ciphers

e Private Key = {p,, p,,....p,}
- A superincreasing sequence
-Values M and W:

M>bi
i=1
GCD(M ,W) =1

e Public Key = {a,, ay,..., a,}
ai = (biW)mod M
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Flawed Security Argument

e Subset Sum is NP-Complete

e Breaking knapsack cipher involves
solving a subset sum problem

e Therefore, knapsack cipher is secure

Flaw: NP-Complete means there is no
fast general solution. Some instances

may be solved quickly.
(Note: Adi Shamir found a way of breaking
knapsack cipher [1982])
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Crossing-Levels

Python Program
C Program

x86 Instructions

Python
Interpreter

i

x86 Instructions

Programming Languages
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Fortran (1954), IBM (Backus)

LISP (1957) Algol (1958)

BASIC (1963)

CPL (1963), U Cambridge
Scheme (1975)

Combined Programming Languag
Simula (1967)
BCPL (1967), MIT

Basic Combined Programming Language

ABC (~1980) B (1969), Bell Labs Smaljalk
'

(1971), PARC
C (1970), Bell Lab

=+ 983), Bell Labs Objective C
Python (1990), .
Guido van Rossum Programming Languages

Java (1995) Phylogeny (Simplified)
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“Jamais Jamais Jamais” from Harmonice Musices
Odhecaton A. Printed by Ottaviano Dei Petrucci in
1501 (first music with movable type)
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Why so many
Programming Languages?
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J S Bach, “Coffee Cantata”,

“Jamais Jamais Jamais” from
Harmonice Musices Odhecaton A. BWV 211 (1732)
(1 501 ) www.npj.com/homepage/teritowe/jsbhand. html

15
Modern Music Notation
&
@
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Roman Haubenstock- John Cage, Fontana Mix
Ramati, Concerto a Tre
http://ww i or i 1/
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Thought and Action

e Languages change the way we think
- Scheme: think about procedures
- BASIC: think about GOTO

- Algol, Pascal: think about assignments, control
blocks

- Java: think about types, squiggles, exceptions
- Python?
e Languages provide abstractions of machine
resources
- Hide dangerous/confusing details: memory

locations, instruction opcodes, number
representations, calling conventions, etc.
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Abstractions

e Higher level abstractions
- Python, Java, BASIC, ...
- Easier to describe abstract algorithms
- But, cannot manipulate low-level machine
state
¢ How are things stored in memory?
e Opportunities for optimization lost
e Lower level abstractions
- C, C++, JVML, MSIL, Assembly, ...
- Harder to describe abstraction algorithms

- Provides programmer with control over low-
level machine state

UVa €S216 Spring 2006 - Lecture 9: Low-Level Programming 20

Biggest Single Difference:
Memory Management

¢ High-level languages (Python, Java)
provide automatic memory
management
- Programmer has no control over how

memory is allocated and reclaimed

- Garbage collector reclaims storage

e Low-level languages (C, Assembly)
leave it up to the programmer to
manage memory
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Fortran (1954), IBM (Backus)

LISP (1957) Algol (1958)

BASIC (1963) CPL (1963), U Cambridge
Scheme (1975)  combined Programming Languag
/

Simula (1967)
BCPL (1967), MIT

Basic Combined Programming Language

ABC (~1980) B (1969), Bell Labs Smaljfalk
/

C (1970), Bell Labs
983), Bell Labs Objective C

Python (1990), .
Guido van Rossum Programming Languages

Java (1995) Phylogeny (Simplified)
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C Programming Language
e Developed to build Unix OS

e Main design considerations:

- Compiler size: needed to run on PDP-11
with 24KB of memory (Algol60 was too big
to fit)

- Code size: needed to implement the whole
0OS and applications with little memory

- Performance, Portability
e Little (if any consideration):
- Security, robustness, maintainability
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C Language

¢ No support for:
- Array bounds checking
- Null dereferences checking
- Data abstraction, subtyping, inheritance
- Exceptions
- Automatic memory management

e Program crashes (or worse) when
something bad happens

¢ Lots of syntactically legal programs
have undefined behavior
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Example C Program

void test (int x) {
while (x = 1) {
printf ("I'm an imbecile!”);
X=X+1;
¥
¥

Weak type checking:
In C, there is no boolean type.

Any value can be the test expression.

x = 1 assigns 1 to x, and has the value 1.

In Java:
void test (int x) {
while (x = 1) {
printf ("I'm an imbecile!”)
X=Xx+1;
¥
¥

> javac Test.java
Test.java:21: incompatible typ
found :int

required: boolean

Fortran (1954) LET
e
Algol (1958)

CPL (1963), U Cambridge H
Combined Programming Language

BCPL (1967), MIT :
Basic Combined Programming Language

B (1969), Bell Labs =

C (1970), Bell Labs =
—

C++ (1983), Bell Labs =

while (x = 1) {

I'm an imbecile!
I'm an imbecile!
I'm an imbecile!
I'm an imbecile!

1 error

Java (1995), Sun =
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= VS, =

Why does Python use = for assignment?
e Algol (designed for elegance for presenting
algorithms) used :=

CPL and BCPL based on Algol, used :=

e Thompson and Ritchie had a small computer to
implement B, saved space by using = instead

e C was successor to B (also on small computer)

e C++'s main design goal was backwards
compatibility with C

e Python was designed to be easy for C and C++
programmers to learn
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C Bounds Non-Checking

int main (void) {
intx=9;
char s[4];

gets(s);
printf ("s is: %s\n", s);
printf ("x is: %d\n", x);

Note: your results
may vary
(depending on
machine, compiler,
what else is
running, time of
day, etc.). Thisis
what makes C fun!

> gcc -0 bounds bounds.c

> bounds

abcdefghijkl

sis: abcdefghi}kl\
xis: 9

> bounds

abcdefghijkim

s is: abcdefghijklmn

X is: 1828716553 _

> bounds = 0x6d000009
abcdefghijkin

s is: abcdefghijkin

x is: 1845493769 = (Qx6e000009
> bounds T

aaa... [a few thousand characters]
crashes shell
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Charge

e Wednesday: Exam 1 is out, due
Monday

¢ No regularly scheduled Small Hall
and office hours while Exam 1 is out
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