
CS216: Exam 1

1 of 10 2/27/2006 10:47 AM

University of Virginia Computer Science

CS216: Program and Data Representation, Spring 2006 27 February 2006

[PDF version for printing]

Exam 1
Out: 22 February 2006

Due: Monday, 27 February, 11:01AM

Name: ___

Directions

Work alone. You may not discuss these problems or anything related to the material

covered by this exam with anyone except for the course staff between receiving this exam and

class Monday.

Open resrouces. You may use any books you want, lecture notes and slides, your notes, and

problem sets. If you use anything other than the course books and notes, cite what you used.

You may not use other people.

No Python. You may not run a Python interpreter between now and when you turn in this

exam. If you need to use a Python interpreter for some other purpose before then, request

permission first.

Answer well. Write your answers on this exam. You should not need more space than is

provided to write good answers, but if you want more space you may attach extra sheets. If you

do, make sure the answers are clearly marked.

This exam has 11 questions, and two optional non-credit questions. The questions are not

necessarily in order of increasing difficulty, so if you get stuck on one question you should

continue on to the next question. There is no time limit on this exam, but it should not take a

well-prepared student more than an hour or two to complete.

Full credit depends on the clarity and elegance of your answer, not just correctness. Your

answers should be as short and simple as possible, but not simpler.

CS216: Exam 1

2 of 10 2/27/2006 10:47 AM

Order Notation

For each of the questions below, fill in the missing symbol with one of these choices:

= — the sets are equal

⊂⊂⊂⊂ — the left set is a strict subset (cannot be equal) of the right set

⊃⊃⊃⊃ — the left set is a strict superset (cannot be equal) of the right set

⊆⊆⊆⊆ — the left set is a subset (can be equal) of the right set

⊇⊇⊇⊇ — the left set is a superset (can be equal) of the right set

≠≠≠≠ — the sets are not equal, but there is no subset or superset relationship

You should select the strongest possible choice (for example, if two sets are equal and you select subset, that

is a correct statement, but not worth full credit).

For each answer, provide a short justification of your answer. Your justification should follow from the

definitions of the order notations.

1. (5 points) O (n) _______ Θ (n
2
)

 Justification:

2. (5) Θ (n) _______ O (2n)

 Justification:

CS216: Exam 1

3 of 10 2/27/2006 10:47 AM

 3. (5) ∅ _______ O (n!) ∩ Ω(n
n
)

 Justification:

4. (5) O (1) _______ Θ (1)

 Justification:

CS216: Exam 1

4 of 10 2/27/2006 10:47 AM

Lists

5. (10) Complete the definition of the ListNode method reverse, that is called by the LinkedList

method reverse to produce a reversed self list as its output (the same elements as in self, but in reverse

order). For example,

 l = LinkedList.LinkedList ().append(1).append(2).append(3)

 r = l.reverse ()

should make r the list [3, 2, 1] and leave l as the list [1, 2, 3].

The rest of the code is taken from the LinkedList.py implementation of an immutable list datatype from

Problem Set 2.

Remeber that you are not allowed to use a Python interpreter for this exam. We are concerned with the

correctness and clarity of your algorithm, not the details of Python syntax. For full credit, your code must be

simple and straightforward. You should not need more than 6 lines.

class LinkedList:

 def __init__(self):

 self.__node = None

 def access (self, index):

 return self.__node.access (index)

 def append (self, e):

 res = LinkedList ()

 if self.__node == None:

 res.__node = ListNode(e)

 else:

 res.__node = self.__node.append (e)

 return res

 def reverse (self):

 res = LinkedList ()

 if self.__node == None:

 res.__node = None

 else:

 res.__node = self.__node.reverse ()

 return res

class ListNode:

 def __init__(self,info):

 self.__info = info

 self.__next = None

 def getNext (self):

 return self.__next

 def access (self, index):

 if index == 0:

 return self.__info

 else:

 return self.__next.access (index - 1)

(Continues on next page)

CS216: Exam 1

5 of 10 2/27/2006 10:47 AM

 def append (self, value):

 res = ListNode (self.__info)

 last = res

 current = self

 while not current.__next == None:

 current = current.__next

 last.__next = ListNode (current.__info)

 last = last.__next

 last.__next = ListNode (value)

 return res

 def reverse (self):

 head = ListNode (self.__info)

 if self.__next == None:

 return head

 else:

 # Answer question 5 by writing your code here:

6. (10) What is the asymptotic running time of your reverse implementation? Explain your answer

convincingly, and be sure to define any variables you use and state any assumptions you make clearly.

CS216: Exam 1

6 of 10 2/27/2006 10:47 AM

Matching

For Problem Sets 1 and 2 (and possibly some future problem sets), I assigned students partners. The goal of

the assignments is to maximize the total goodness value of all the assignments, where each pair has a

goodness score calculated according to some function. For example, the goodness score used for assigning

Problem Set 1 partners was:

def goodnessScore (s, t):

 if s == None or t == None: return -1

 # matching in same section preferred

 if records[s]['section'] == records[t]['section']:

 score += 100

 # better to match with different major

 if not records[s]['major'] == records[t]['major']:

 score += 20

 # better to match students in different years

 if not records[s]['year'] == records[t]['year']:

 score += 10

 # very bad to match with someone either partner listed in question 6

 # on the registration survey

 if records[s]['notpartners'].find (t) != -1:

 score -= 1000

 if records[t]['notpartners'].find (s) != -1:

 score -= 1000

 return score

One way to determine the partnerships is to use a greedy algorithm — it goes through the students in order,

finding the best possible match for each student considering only the students who have not yet been

matched:

def assignPartners(students):

 partners = { }

 for student in students:

 if partners.has_key (student):

 break # already matched with a partner

 partner = None

 for ppartner in students:

 # can't partner with yourself or already partnered student

 if not ppartner == student and not partners.has_key (ppartner):

 if goodnessScore (student, ppartner) \

 > goodnessScore (student, partner):

 partner = ppartner

 if partner == None:

 pass # No partner for student

 else:

 partners[student] = partner

 partners[partner] = student

 return partners

This is a simple algorithm, but it is not optimal. (In this context, an optimal algorithm would produce a set of

partner pairings that maximizes the total goodness score. We count each partnership twice, from the

perspective of both students. Whether or not those partnerships are ideal according to the goals of the course

depends on having the correct goodnessScore function, which of course, is much tougher.)

CS216: Exam 1

7 of 10 2/27/2006 10:47 AM

7. (10) Prove the greedy partnering algorithm shown is not optimal by showing an input for which it would

not produce the correct result.

8. (5) What is the asymptotic running time of assignPartners? Be sure to define any variables you use

in your answer and state your assumptions about Python operations clearly.

CS216: Exam 1

8 of 10 2/27/2006 10:47 AM

 Zulma Zyppy is upset with her problem set partners (actually, she is upset that she didn't get assigned any

partner at all for both problem sets). She suggests replacing the greedy partner assignment algorithm with an

optimal algorithm that trys all possible partner assignments to find the one with the best total goodness

score.

She has implemented part of the code for an optimal algorithm below:

def assignPartners(students):

 best = None

 bestscore = 0

 for partners in allPossiblePartnerAssignments(students):

 score = 0

 for student in students:

 score += goodnessScore (student, partners[student])

 if score > bestscore:

 best = partners

 bestscore = score

 return best

Because of her problems with PS1 and PS2 partners, however, Zulma has asked you for help implementing

allPossiblePartnerAssignments.

9. (10) Define the allPossiblePartnerAssignments procedure Zulma needs.

CS216: Exam 1

9 of 10 2/27/2006 10:47 AM

 10. (10) Explain why Zuma's partner assignment algorithm would not run fast enough to be used to assign

partners for PS4. (Note: a good answer would include an explanation of the running time of

assignPartners. Assume you have a correct and optimally efficient

allPossiblePartnerAssignments implementation regardless of your answer to question 9. You

should be able to answer question 10 well, even if you could not answer question 9.)

CS216: Exam 1

10 of 10 2/27/2006 10:47 AM

 11. (no expected points, bonus points possible) Suggest a better algorithm to use to assign partners for

future problem sets. (Bonus points will be awarded both for better assignPartners algorithms for

finding a goodness-maximizing partner assignment, and for good (even non-technical) suggestions about the

goodnessScore function.)

These two questions are optional and worth no credit, but we appreciate your answers.

12. (no credit) Do you feel your performance on this exam will fairly reflect your understanding of the

course material so far? If not, explain why.

13. (no credit) Do you have any comments about how the course is going so far or suggests for improving

the remainder of the course? (If you prefer to answer this question anonymously, you may turn in a separate

page with your answer on it and no name.)

CS216: Program and Data Representation

University of Virginia

cs216-staff@cs.virginia.edu

Using these Materials

