
cs2220: Engineering Software

Class 1:

Engineering Software?

Fall 2010

University of Virginia

David Evans

Menu

Can we engineer software?
About this Course

Managing Complexity

Can we engineer software?

What is engineering?

flickr cc:dpblackwood

Webster’s Definitions

en·gi·neer·ing (n j -nîr ng) n.

1a. The application of scientific and mathematical
principles to practical ends such as the design,
manufacture, and operation of efficient and
economical structures, machines, processes, and
systems.

b. The profession of or the work performed by an
engineer.

2. Skillful maneuvering or direction: geopolitical

engineering; social engineering.

Design Under Constraint

“Engineering is design under constraint…
Engineering is synthetic - it strives to
create what can be, but it is constrained
by nature, by cost, by concerns of
safety, reliability, environmental impact,
manufacturability, maintainability and
many other such 'ilities.' ...”

William Wulf and George Fisher

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

Computing Power 1969-2010

Moore’s “Law”: computing power

roughly doubles every 18 months!

Constraints Software Engineers Face

Not like those for “real” engineers:

Weight, physics, etc.

Complexity of what we can understand

Most important constraints:

Limits of human memory

Cost of human effort

This class is about managing complexity to efficiently

produce reliable complex software systems.

How is engineering software different

from engineering bridges?

Bridges Software

Continuous

Calculus

Testing/analysis is “easy”

if the bridge holds for 1M kg,

it also probably holds 0.99M kg

Discrete

Logic, Discrete Mathematics

Testing/analysis is difficult

Bridges Software

Made of physical stuff

Most costs are obvious

Changes after construction

are hard

Made of virtual stuff

All costs are non-obvious

Changes should be easy (but

they’re not)

Requirements are (usually)

obvious and easy to

describe

A good design is apparent

to everyone immediately

Requirements are
mysterious and hard to
describe

A good design is only
apparent to “experts”
but has impact later on

Bridges Software

Obvious when it fails

Bridge makers get sued

Architects need licenses

Sibley & Walker (~30 years

between failures)

Falls down quietly (usually)

Software vendors blame user,

charge for upgrades

Anyone can make software,

no one gets sued

Bridges Software
Software Failures

Spanair flight 5022 (2008)

Ariane 5 (1996)

Course Overview

Introductions Thursday

where cs1120 ends…
I think that it’s extraordinarily important that we in computer

science keep fun in computing. When it started out, it was an

awful lot of fun. Of course, the paying customer got shafted

every now and then, and after a while we began to take their

complaints seriously. We began to feel as if we really were

responsible for the successful, error-free perfect use of these

machines. I don't think we are. I think we’re responsible for

stretching them, setting them off in new directions, and keeping

fun in the house. I hope the field of computer science never

loses its sense of fun…. What’s in your hands, I think and hope,

is intelligence: the ability to see the machine as more than when

you were first led up to it, that you can make it more.

Alan Perlis, preface to Abelson & Sussman,

Structure and Interpretation of Computer Programs

C
o

m
p

u
te

r
S

ci
e

n
ce

Software Engineering: taking “customer”

complaints seriously!

but, it should still be fun and stretching what one can do with computers!

Small, Fun Programs (“cs1120”)

vs.

Big, Important Programs

(simulated in “cs2220”)

Small, Fun Programs Important Programs

Small, Fun Programs

If it doesn’t work on some

input, no big deal

Happy if it works once

If it doesn’t work on just

one input people may

die, $$$$ lost

Must work on all inputs

Important Programs

flickr cc:foolswisdom flickr cc: scottvanderchijs

Small, Fun Programs

Manage complexity

mostly by memory

Written by a few

people over a short

period of time

Written by many people

over many years

Need to design and

document well to

manage complexity

Important Programs

How Big are Big Programs?

Largest program in cs1120: ~1000 lines of code

F-22 Steath Fighter Avionics Software: 1.5M loc

Linux: 10M lines of code

Windows (XP): ~50M lines of code

Amazon.com: ~100M lines of code

Modern automobile: ~100M lines of code

Typical estimate: $18 per line of code

Typical estimate: 1 bug per 1000 lines of (production) code

Goal of cs2220

Develop the concepts and skills necessary to

successfully build important software.

Grading

A+: I would be willing to fly in a plane running

software you designed and wrote

A: I would be willing to shop in an ecommerce

store you built

B: I would trust you to manage programmers

working on important software

(See syllabus for grading details.)

Course Summary
Main ideas:

Abstraction

Using and designing data abstractions

Specification

Understanding and writing declarative specifications

Analysis

Static: reasoning about behavior

Dynamic: developing and executing testing strategies

Learn by doing:

5 smallish software projects (problem sets 1-5)

individually, in small teams, 1-2.5 weeks each

1 larger team project: (almost) anything you want

Expected Background

Prerequisite: cs1120/cs150

You should be able to:

Write and understand short programs

Write and understand recursive definitions

Use procedures as parameters and results

Analyze the asymptotic running-time of a
procedure

Understand replacement (BNF) grammars

If you don’t have this background, you may still be able to take the class (talk to me).

Course History

2002: First offered (cs201j)

Developed with support from National Science Foundation

Spring 2006: BACS Degree launched

Fall 2006: cs205

Fall 2007, 2008, 2009: cs205 (taught by Paul

Reynolds)

Fall 2010: cs2220

Course Pledge

Not the classroom pledge!

The whole point of being at a University is so you can:

– Learn from your classmates

– Learn better by teaching your classmates

READ, sign and return the cs2220 Pledge next class
(Thursday)

If you disagree with anything, this is your chance to
object

There may be questions about the pledge on a quiz!

Help Available

Me: David Evans

Office hours: Mondays, 1:15-2:30pm

Thursdays, 11am-noon

Blog comments: http://www.cs.virginia.edu/cs2220

Please use this for things that would be useful
for everyone

Email: evans@cs.virginia.edu (anytime)

Assistant Teacher:

Web site: http://www.cs.virginia.edu/cs2220
Almost Everything goes on the web

Don’t be afraid to ask for help!

Charge

This class is about:

Managing complexity: modularity, abstraction,
specification

Engineering dependability: analysis,
redundancy, design

By 5pm Tomorrow: submit registration survey

Thursday: Print, read, and return cs2220 pledge

Beginning of class Tuesday: Problem Set 1 Due

If you do not satisfy the prereq for this course but want to stay in it, please

talk to me now (or Thursday 11-noon, or arrange another time.

