
cs2220: Engineering Software

Class 13:

Behavioral Subtyping

Fall 2010

University of Virginia

David Evans

What’s the difference between a

black bear and a grizzly bear?

Killer

BlackBear GrizzlyBear

Climber

Bear

KillingBear

Exam 1

Question 1

Give one concrete example where the Java programming

language designers sacrificed expressiveness for truthiness. An

ideal answer would illustrate your example with code snippets

showing something that is difficult to express concisely because

of the Java language’s emphasis on truthiness.

public class HelloWorld {

public static void main (String [] args) {

System.out.println(“Hello!”);

}

}

What are the language design

decisions Java made differently

from Scheme to explain why

this is so long?

What Java language design decisions make this so long?

public class HelloWorld {

public static void main (String [] args) {

System.out.println(“Hello!”);

}

}

Question 1

public class HelloWorld {

public static void main (String [] args) {

System.out.println(“Hello!”);

}

}

1. Static typing: big win for truthiness

2. All procedures must be inside a class

3. Default visibility is not public (package protected)

4. Use squiggly brackets to denote blocks, semi-colons to

end statements

5. Not providing a special, convenient way to print

output, but requiring an I/O object and invoking a

method

Exam 1

90-100 9

80-89 5

70-79 0

<=70 4

Score Distribution

I will re-ask (in slightly different from) at least some of the

questions on Exam 1 on Exam 2.

Recap: Substitution Principle Summary

Param Types Psub ≥ Psuper

Preconditions pre_sub ⇒ pre_super

Result Type Rsub ≤ Rsuper

Postconditions post_sub ⇒ post_super

Properties properties_sub ⇒ properties_super

contravariant

for inputs

covariant

for outputs

These properties ensure code that is correct using an object of

supertype is correct using an object of subtype.

Killer

BlackBear GrizzlyBear

Climber

Bear

KillingBear

What should the spec

of the KillingBear class’

kill (Object o)

method be?

GrizzlyBear:

public boolean kill(Object o)

// MODIFIES: this, o, nearby trees and

// incidentals

// EFFECTS: If o is up a tree, knocks down

// the tree, eats o, and returns true.

// Otherwise, returns false.

// REQUIRES: o is yummy to a GrizzlyBear

BlackBear:

public boolean kill(Object o)

// MODIFIES: this, o

// EFFECTS: If o is up a tree, climbs the tree,

// eats o, and returns true. Otherwise,

// if o is reachable, eats o. Otherwise,

// returns false.

Substitution Principle

Is this the only way?

Eiffel’s Rules

(Described in Bertrand Meyer paper for ps4)

Eiffel Rules

Skier
set_roommate (Skier)

Boy Girl

The types of the parameters in the

subtype method may be subtypes of

the supertype parameters.

How can Girl override set_roomate?

set_roommate (Girl g)

set_roommate (Boy b)

Opposite of substitution principle!

Eiffel and I Can’t Get Up?

Skier
set_roommate (Skier)

Boy Girl
set_roomate (Girl)

Meyer’s paper is all about the contortions Eiffel needs

to deal with non-substitutable subtypes

s: skier; g: girl; b: boy;

s := g;

...

s.set_roommate (b);

Substitution Principle vs. Eiffel

Substitution Principle Eiffel

Parameters PB >= PA PB <= PA

Preconditions pre_A ⇒ pre_B pre_B ⇒⇒⇒⇒pre_A

Result RB <= RA RB <= RA

Postconditions post_B ⇒ post_A post_B ⇒ post_A

Skier
set_roommate (Skier)

Boy
set_roomate (Boy)

Skier
set_roommate (Skier)

Boy
set_roomate (Object)

Substitution Rules vs. Java

Skier
set_roommate (Skier)

Boy
set_roomate (Object)

Skier
set_roommate (Skier)

Boy
@Override

void set_roommate(Skier)

// Overloads

void set_roommate (Object)

Overloading and Overriding

• Overriding: replacing a supertype’s method in

a subtype

– Dynamic dispatch finds method of actual type

• Overloading: providing two methods with the

same name but different parameter types

– Statically select most specific matching method of

apparent type

Overloading Example
public class Overloaded extends Object {

public int tryMe (Object o) {

return 17;

}

public int tryMe (String s) {

return 23;

}

public boolean equals (String s) {

return true;

}

}
public boolean equals (Object)

is inherited from Object

Overloading

public class Overloaded {

public int tryMe (Object o) {

return 17;

}

public int tryMe (String s) {

return 23;

}

public boolean equals (String s) {

return true;

}

}

static public void main (String args[]) {

Overloaded over = new Overloaded ();

System.err.println (over.tryMe (over));

System.err.println (over.tryMe (new String ("test")));

Object obj = new String ("test");

System.err.println (over.tryMe (obj));

System.err.println (over.equals (new String ("test")));

System.err.println (over.equals (obj));

Object obj2 = over;

System.err.println (obj2.equals (new String ("test")));

}

17

23

17

true

false

false

Overloading 2

public class Overwhelming {

public int tryMe (Object o, String s) {

return 17;

}

public int tryMe (String s, Object o) {

return 23;

}

public static void main(String[] args) {

Overwhelming over = new Overwhelming ();

System.err.println (over.tryMe ("test1", "test2"));

}

}
Compiler error:

The method tryMe(Object, String) is

ambiguous for the type Overwhelming

Overkill

• Overloading and overriding together can be
overwhelming!

• Avoid overloading whenever possible: names
are cheap and plentiful

• One place you can’t easily avoid it:
constructors (they all have to have the same
name)

– But, can make static “factory” methods instead
(this is usually better)

Use @Override annotations so compiler will check that you are actually overriding!

Java Buzzword Description

“A simple, object-oriented,
distributed, interpreted, robust,
secure, architecture neutral, portable,
high-performance, multithreaded,
and dynamic language.”

[Sun95]
Later in the course, we will discuss how

well it satisfies these “buzzwords”.

from Class 2...

