
Yixin Sun

Class 17:

Concurrency

and OOP

Fall 2010
UVa

David Evans

cs2220:

Engineering

Software

PS5 Designs [Throughout the Day]

1. Blanton, James Kalish, Michael

2. Borja, Joseph Oh, Uyn Noh, Brian

3. Brown, Jeremy Hearn, Charles

4. Chen, Jiamin Sparkman, Elisabeth Sun, Yixin

5. Dewey-Vogt, Michael Lopez, Erik

6. Dilorenzo, Jonathan Featherston, Joseph

7. Dollhopf, Niklaus Marion, John

8. Herder, Samuel Wallace, Alexander

Partial Ordering of Events
• Sequential programs give use a total ordering

of events: everything happens in a

determined order

• Concurrency gives us a partial ordering of

events: we know some things happen before

other things, but not total order

How is concurrency a kind of abstraction?

Value of Concurrency

• As an abstraction: hides the details of exactly

when things happen

– Program thinking about objects

– Interleaving of events

• Opportunity for implementations:

– Execute faster by using multiple cores

A Picture of the Multicore Crisis

http://smoothspan.wordpress.com/2007/09/06/a-picture-of-the-multicore-crisis/

The Free Lunch Is

Over: A

Fundamental Turn

Toward

Concurrency in

Software,

Herb Sutter

http://www.gotw.ca/publications/concurrency-ddj.htm

Where is most of the processing

power on your PC?

nVIDIA GeForce GTX 470

448 Cores

nVIDIA QuadroPlex 7000 DHIC

1792 cores

Challenge of Concurrency

Store

Instruction Streams

Shared Data

Server

Listener
Request 1

Request 2

Request 3

public class BankAccount {

private int balance;

..

public void transfer(BankAccount b, int amount) throws InsufficientFundsException {

// MODIFIES: this, b

// EFFECTS: If this account has more than amount value, transfers amount from

// this account to b. Otherwise, throws InsufficientFundsException.

if (this.getBalance() > amount) {

b.addFunds(amount);

this.balance = this.balance – amount;

} else { throw new InsufficientFundsException(); }

}

Request 1

Request 2

b1.transfer(b2, 1000);

if (this.getBalance() > amount)

b1.balance = 1001;

b.addFunds(amount);

b2.balance = 1000;

b2.balance = 0;

this.balance = this.balance – amount;

b1.balance = 1;

b1.transfer(b2, 1000);

if (this.getBalance() > amount)

b.addFunds(amount);

b2.balance = 2000;

synchronized(this) {

synchronized(b) {

Why are threads hard?
Too few ordering constraints: race conditions

Too many ordering constraints: deadlocks

poor performance, livelocks, starvation

Hard/impossible to reason modularly

– If an object is accessible to multiple threads, need to think

about what any of those threads could do at any time!

Testing is even more impossible than it is for sequential

code

– Even if you test all the inputs, don’t know it will work if

threads run in different order

Solutions

No shared store

Functional programming

Scheme without set!, set-car!, set-cdr!

Use analysis tools and locking discipline

http://findbugs.sourceforge.net/

Force determinism

Require thread interleavings to happen in a

predictable way

PS5 Designs [Throughout the Day]

1. Blanton, James Kalish, Michael

2. Borja, Joseph Oh, Uyn Noh, Brian

3. Brown, Jeremy Hearn, Charles

4. Chen, Jiamin Sparkman, Elisabeth Sun, Yixin

5. Dewey-Vogt, Michael Lopez, Erik

6. Dilorenzo, Jonathan Featherston, Joseph

7. Dollhopf, Niklaus Marion, John

8. Herder, Samuel Wallace, Alexander

Buzzword Description

“A simple, object-oriented,
distributed, interpreted, robust,
secure, architecture neutral, portable,
high-performance, multithreaded,
and dynamic language.” [Sun95]

As the course proceeds, we will discuss how well it satisfies these

“buzzwords”. You should especially be able to answer how well it

satisfies each of the blue ones in your final interview.

from Class 2...

What does is mean

for a language to be

“Object-Oriented”?

What is an Object?

• Packaging state and procedures

– state: the rep

• What a thing is

– procedures: methods and constructors

• What you can do with it

“Object-oriented programming is programming with
inheritance. Data abstraction is programming using
user-defined types. With few exceptions, object-
oriented programming can and ought to be a superset
of data abstraction. These techniques need proper
support to be effective. Data abstraction primarily
needs support in the form of language features and
object-oriented programming needs further support
from a programming environment. To be general
purpose, a language supporting data abstraction or
object-oriented programming must enable effective
use of traditional hardware.”

Bjarne Stroustrup (C++)’s Answer

“I invented the

term Object-

Oriented and I

can tell you I did

not have C++ in

mind.”
Alan Kay

Programming Language History

• Before 1954: twidling knobs, machine code,

assembly code

• FORTRAN (John Backus, UVa dropout, 1954) –

Formula Translation

• Algol (Peter Naur, Alan Perlis, et. al., 1958-1960)

– Most influential programming language

– Many of the things Algol did first (types, while,

blocks) are in Java

BNF Grammar

Programming Language History

Simula (Dahl and Nygaard, 1962-7)

First language with subtyping and
inheritance

CLU (Liskov et. al., 1970s)

First language with good support for
data abstraction (but no subtyping or
inheritance)

Smalltalk (Kay et. al., 1970s)

First successful language and
programming system to support
subtyping and inheritance

2002 Turing Award

2008 Turing Award

2003 Turing Award

Simula
• Considered the first

“object-oriented”
programming language

• Language designed for
simulation by Kristen
Nygaard and Ole-Johan
Dahl (Norway, 1962)

• Had special syntax for
defining classes that
packages state and
procedures together

Counter in Simula

class counter;

integer count;

begin

procedure reset(); count := 0; end;

procedure next();

count := count + 1; end;

integer procedure current();

current := count; end;

end Does this have everything we need for

“object-oriented programming”?

XEROX Palo Alto Research Center (PARC)

1970s:

• Bitmapped display

• Graphical User Interface
– Steve Jobs paid $1M to visit and

PARC, and returned to make
Apple Lisa/Mac

• Ethernet

• First personal computer (Alto)

• PostScript Printers

• Object-Oriented Programming

Dynabook, 1972

(Just a model)

“Don’t worry about what anybody else is

going to do… The best way to predict the

future is to invent it. Really smart people

with reasonable funding can do just

about anything that doesn't violate too

many of Newton's Laws!”

— Alan Kay, 1971

Dynabook 1972

• Tablet computer intended as tool for learning

• Alan Kay wanted children to program it also

• Hallway argument, Kay claims you could

define “the most powerful language in the

world in a page of code”

Proof: Smalltalk

Scheme is as powerful, but takes two pages

Simple Java compiler and VM requires

thousands of pages

BYTE

Magazine,

August 1981

Smalltalk

• Everything is an object

• Objects communicate by sending and

receiving messages

• Objects have their own state (which may

contain other objects)

• How do you do 3 + 4?

send the object 3 the message “+ 4”

Counter in Smalltalk

class name counter

instance variable names count

new count <- 0

next count <- count + 1

current ^ count

CLU

• Developed by Barbara Liskov and colleagues at
MIT (1973-1978)

• First language to provide real support for data
abstraction

– Encapsulation

– Abstract data types: hide representation outside
data type implementation

– Parameterized types (generics), iteration
abstraction, exceptions

Problems in Simula that motivated CLU

1. “Simula did not support encapsulation, so its classes could
be used as a data abstraction mechanism only if
programmers obeyed rules not enforced by the language.”

2. Simula did not provide support for user-defined type
"generators." These are modules that define groups of
related types, e.g., a user-defined set module that defines
set[int], set[real], etc.

3. It associated operations with objects, not with types.

4. “It treated built-in and user-defined types non-uniformly.
Objects of user-defined types had to reside in the heap,
but objects of built-in type could be in either the stack or
the heap.”

Barbara Liskov, A History of CLU, 1992

CLU “solved” all of these…how many do Java solve?

counter in CLU
counter = cluster is create, next, current

rep = record [count: int];

create = proc () returns (counter);

return up(rep${count: 0});

end create;

next = proc (c: counter);

val : rep := down(c);

val.count := val.count + 1;

end next;

current = proc (c: counter) returns (int);

return (down(c).count);

end current;

end counter;

Programming Language Design Space

E
x
p
re
ss
iv
e
n
e
ss

“Truthiness”

Scheme

Python

Java

C++
C

low

high

Spec#

Ada

strict typing,

static

BASIC

more mistake prone less mistake prone

Where do Smalltalk,

Simula, and CLU belong?

So, who really

was the first

object-oriented

programmer?

Object-oriented

programming is an

exceptionally bad idea

which could only have

originated in

California. Edsger Dijkstra (1930-2002)

1972 Turing Award Winner

Object-Oriented Programming

Object-Oriented Programming is a state of mind

where you program by thinking about objects

It is difficult to reach that state of mind if your
language doesn’t have:

Mechanisms for packaging state and procedures

Subtyping

Other things can help: dynamic dispatch,
inheritance, automatic memory
management, everything is an object, mixins,
good donuts, etc.

Java has class
Java has extends and implements

Who was the first

object-oriented programmer?

Ada, Countess of Lovelace,

around 1843

By the word operation, we mean any process
which alters the mutual relation of two or
more things, be this relation of what kind it
may. This is the most general definition, and
would include all subjects in the universe.
Again, it might act upon other things besides
number, were objects found whose mutual
fundamental relations could be expressed by
those of the abstract science of operations...
Supposing, for instance, that the fundamental
relations of pitched sounds in the science of
harmony and of musical composition were
susceptible of such expression and
adaptations, the engine might compose
elaborate and scientific pieces of music of any
degree of complexity or extent.

