i c52220 E - e " Class 1'8£
Englneerlng : o Co_ urrency
: ‘Softy__/a_r,‘e

Fall 2010
UVa
Daﬁd Evang

Image: Michael Dev'v-ey-\logt

Plan for Today

wait and notify
Concurrency on Mars!
Project Time

Scheduling Update:
Exam 2 (originally scheduled for Oct 28-Nov 2) will
now be: Nov 18-Nov 23
Project Team Requests: 11:59pm Friday
. C\“l)s ——Project Idea Proposals: +€59pm-Wedmesday-Nov 3
LS \ f} Project Design Document: Class, Tuesday, Nov 9
{U ‘\\ 0 Design Reviews: Nov 10-17 (scheduled by team)
Project Progress Reports: Tuesday, Nov 30
Project Demos/Presentations: 7 December (last class)

Synchronizing

synchronized(obj) { code }

Provides mutual exclusion: code inside synchronized
can only run when lock of obj is held

obj.wait()
Gives up lock on obj; puts current thread in
waiting set for obj

obj.notify(), obj.notifyAll()
Don’t give up lock; selects one (notify) or all
(notifyAll) threads in waiting set for obj and
wakes them up (to be scheduled)

[Methods inerited from class java.lang.Obiect ‘

|fina1ize, gerca notify, notifyAll, weit, weit, weit

Wait, Wait Don’t Notify Me!

http://download.oracle.com/javase/6/docs/api/java/lang/Object.html#wait%28%29

public final void wait() throws InterruptedException

Causes the current thread to wait until another thread invokes the notify() method or
the notifyAll() method for this object. In other words, this method behaves exactly as
DV\)\(; f‘mz_\\ NN it (’ov\‘) ™5,
I”"“) Nhan o

if it simply performs the call wait(0).

public final void wait(long timeout) throws InterruptedException
Causes the current thread to wait until either another thread invokes the notify()
method or the notifyAll() method for this object, or a specified amount of time has

elapsed.

public final void notify()
Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting

on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at
the discretion of the implementation. A thread waits on an object's monitor by calling one

of the wait methods.

The awakened thread will not be able to proceed until the current thread relinquishes the

lock on this object

wait and notify
Thread A Thread B

|

synchronized (o)

o.wait () synchronized (o) {
waiting

o.notify ()

<«

l awake, but not running
. }// end synchronized
can reclaim o lock

wait and notify "7

Thread A Thread B synchronized (o)

l If multiple threads are waiting o.wait ()
on the same object, any one of

synchronized (0)
them can be awakened

3
Q
omatt0 synchronized (0) { 0-?-;
waiting
o.notify () ——
till lawake,
st .
iti } // end synchronized ~ ¥"°t"UNMINg
waiting |

class IncThread extends Thread {

private Counter c; ,
public IncThread (Counter p_c) {c=p_c; } WI’“ IC (\<>0) {
public void run () { .
while (true) {
synchronized (c) {
c.increment (); -
System.err.println ("Running inc thread: " + currentThread () +..); VST % O
c.notify ();
111}

class DecThread extends Thread {

;ublic void run () {
while (true) {

synchronized (c) {

while (c.getValue () <= 0) {
try { c.wait (); } catch (InterruptedExceptione) {; }

}
c.decrement ();
System.err.println ("Running dec thread: " +...);

12834

Counter ¢ = new Counter ();

IncThread ithread = new IncThread (c);
DecThread dthread = new DecThread (c);
ithread.setPriority (Thread.NORM_PRIORITY);
ithread.start ();

dthread.setPriority (Thread.MAX_PRIORITY);
dthread.start ();

Running inc thread: Thread[Thread-0,5,main] / Value: 1
Running dec thread: Thread[Thread-1,10,main] / Value: 0
Running inc thread: Thread[Thread-0,5,main] / Value: 1
Running dec thread: Thread[Thread-1,10,main] / Value: 0
Running inc thread: Thread[Thread-0,5,main] / Value: 1
Running dec thread: Thread[Thread-1,10,main] / Value: 0
Running inc thread: Thread[Thread-0,5,main] / Value: 1
Running dec thread: Thread[Thread-1,10,main] / Value: 0

Priorities
* In general, threads with higher priorities will be
scheduled preferentially.

* There are no guarantees: up to Java scheduler
Thread class:
void setPriority (int newPriority)
// MODIFIES: this
// EFFECTS: Changes the priority of this
// thread to newPriority.

Priorities, Priorities

ithread.setPriority (Thread.NORM_PRIORITY);
ithread.start ();

dthread.setPriority (Thread.MIN_PRIORITY);

dthread.start ();)
The ithread should run more than the

dthread, but there is no guarantee.
Thread.MIN_PRIORITY

Thread.NORM_PRIORITY
Thread.MAX_PRIORITY

Stopping Threads

public class java.lang.Thread {
public final void stop()
Deprecated. This method is inherently unsafe.

Forces the thread to stop executing. ...The
thread represented by this thread is forced to
stop whatever it is doing abnormally and to
throw a newly created ThreadDeath object as an
exception. ...

Why deprecate stop?

* What should happen to all the locks a thread
owns when it is stopped?

* What if an invariant is temporarily broken in a
method?

Suspending Threads

public final void suspend()

Suspends this thread. If the thread is alive, it is
suspended and makes no further progress unless
and until it is resumed.

Deprecated. This method has been deprecated, as it is inherently
deadlock-prone. If the target thread holds a lock on the monitor
protecting a critical system resource when it is suspended, no
thread can access this resource until the target thread is resumed.
If the thread that would resume the target thread attempts to lock
this monitor prior to calling resume, deadlock results. Such
deadlocks typically manifest themselves as "frozen" processes.

Can’t stop, can’t suspend, what can you do?
Tneal

At
in java.lang Thread (-
public void interrupt() mla_va phe reided):
Interrupts this thread. : .
PRAAN ('\)

If this thread is blocked in an invocation of the waitgg, \l
wait(long), or wait(long, int) methods of the Obj s or
of the join(), join(long), join(long, int), sleep(long), or
sleep(long, int), methods of this class, then its interrupt

status will be cleared and it will receive an
InterruptedException.

If none of the previous conditions hold then this thread's
interrupt status will be set.

Being Interrupted

public boolean isInterrupted()
MODIFIES: nothing
EFFECTS: Returns true iff this thread
has been interrupted.

Counter ¢ = new Counter ();

IncThread ithread = new IncThread (c);
DecThread dthread = new DecThread (c);
ithread.setPriority (Thread.NORM_PRIORITY);
ithread.start ();

dthread.setPriority (Thread.MAX_PRIORITY);
dthread.start ();

dthread.interrupt ();

. Running inc thread: Thread[Thread-0,5,main] / Value: 1
InterruPts are just Running dec thread: Thread[Thread-1,10,main] / Value: 0
”pO”tE” requests! Running inc thread: Thread[Thread-0,5,main] / Value: 1
The thread can ignoréaunn!ng FIec thread: Thread[Thread—l,lO,rﬁam] / Value: 0
. A Running inc thread: Thread[Thread-0,5,main] / Value: 1
it and keep g0Ing... Running dec thread: Thread[Thread-1,10,main] / Value: 0
Running inc thread: Thread[Thread-0,5,main] / Value: 1
Running dec thread: Thread[Thread-1,10,main] / Value: 0

Mars Pathfinder

Landed on Mars
July 4, 1997

Sojourner Rover

e New ork Bimes New York Times, 15 July 1997

Juiy 15,1997
Mars Craft Again Halts Transmission

The compuer showdhe Mars Patindrd |\ gry Beth Murrill, a spokeswoman for NASA's Jet Propulsion
fhesidep Sdyed e mbisof2t | aboratory, said transmission of the panoramic shot took “a lot
osd Of processing power.” She likened the data overload to what
Iheofst mnger B Mot 4| happens with a personal computer “when we ask it to do too
The st ene occured n Fritas i1 MMANY things at once.”
Inresponse, conmsollrs rpozamnmedtied 1 NE Project manager, Brian Muirhead, said that to prevent a
Buttoder, sbout mbow o atwobour w4 F@CUrrence, controllers would schedule activities one after
Mo st sid et iepetien | @another, instead of at the same time. It was the second time
Contolers i net o ek i recere . tNE PAthfinder's computer had reset itself while trying to carry
e out several activities at once.

In response, controllers reprogrammed the computer over
the weekend to slow down the rate of activities and avoid
“ another reset. But today, about an hour into a two-hour

transmission session, it happened again.

Mary Beth Murril, a s
‘personal computer "

the data from Sojourner's analysis of the 1

Priority-Based Scheduling

Priority Inversion

Low Medium High
Scheduler ensures that the highest priority task
that can run is always running synchronized(r) { synchronized(r)
Lower priority tasks run only when no higher . .
- . re-empts : P
priority task can run low priority Y!?fﬂi&ﬂ
thread H by low-
priority
Standard JavaVM scheduler does not do this, but many task}
operating Systems for embedded systems do including the
vxWorks used on the PathFinder.
What could go wrong with priority-based scheduling?
Priority Inversion on Mars Solutions?

Meterological
data task <—|_>
(low priority)

Data collection task
(medium priority)

For details, see Glenn Reeves account:
http://research.microsoft.com/~mbj/Mars_Pathfinder/Authoritative_Account.html

Priority Inheritance
If a low priority task holds a resource needed by a
high priority task, the low priority task temporarily
inherits the high task’s priority
Priority Ceilings
Associate minimum priorities with resources: only a

high priority task can acquire the lock on an
important resource

Ehe New York Eimes

Tuly 18,1997

Problem Stalling Mars Study Is Reported Solved

Engineers reported today that they had solved the software problem that caused several resets of the overloaded
Mars Pathfinder computer and will radio up a progragremins ~hanna. an Sarras:

il then th il comtine o gt arunc theprobien NS suspected, the Pathfinder computer, struggling
far has averted resets like three carler ones that sowy With several activities at once, reset itself each
The Pathfinder rover, meanwhile, has moved within a| time it could not carry out low-priority tasks in
the deputy 't Brian Muirhead said. ads . .
o Copyprojecimanmees, STt 2 the allotted time. A reset is a safety feature
The source of the software problem was discovered¢ _: _ + P
cnpinees wenlly calod the et becrusc he geiby SIMIIAF to hitting a reset button on a home
"We set the gremlin loose in the testbed.” Mr. Muirhg comPUter') ; . .)
already identified as the probable cause. He wasable The low-priority task that kept tripping it up was
As suspected, the Pathfinder computer, struggling witl the transfer of temperature and wind
carry out low-priority tasks in the allotted time. A resi .
comprter measurements from sensors to an electronics
The low-priory task that kept sipping i up was ted 00@rd @nd then into the computer. The solution is
an electronics board and then into the computer. The i ' 1, T
v to raise the t'ask s pr|or|ty through some
reprogramming, Mr. Muirhead said.

Changing a single line of computer code "will automat

Charge

* Computers are single-threaded (or 2/4/8+-
threaded) machines that provide their owner
the illusion of infinite threads.

* Brains are massively multi-threaded machines
that provide their owner with the illusion of a
single thread.

Thread work = new Thread (project);
work.setPriority (Thread.MAX_PRIORITY);
work.start ();

