
Class 19:

Java Security

Fall 2010
UVa

David Evans

cs2220: 

Engineering 

Software

Image: Elisabeth Sparkman

Plan for Today

Java Security

Java Byte Codes (JVML) and Verification

Reminder:

Project Team Requests are due before midnight tomorrow

Project Idea Proposals are due in class Tuesday

Buzzword Description

“A simple, object-oriented, 
distributed, interpreted, robust, 
secure, architecture neutral, portable, 
high-performance, multithreaded, 
and dynamic language.”      [Sun95]

As the course proceeds, we will discuss how well it satisfies these 

“buzzwords”.  You should especially be able to answer how well it 

satisfies each of the blue ones in your final interview.

from Class 2...

What is a secure programming 

language?

1. Language is designed so it cannot express 
certain computations considered insecure.

2. Language is designed so that (accidental) 
program bugs are likely to be caught by the 
compiler or run-time environment instead 
of leading to security vulnerabilities.

A few attempt to do this: PLAN, packet filters

Safe Programming Languages

Type Safety

Compiler and run-time environment ensure that bits are 

treated as the type they represent

Memory Safety

Compiler and run-time environment ensure that program 

cannot access memory outside defined storage

Control Flow Safety

Can’t jump to arbitrary addresses

Is Java the first language to have them?

No way!  LISP had them all before 1960.  

Sometimes people use

“type safety” to mean all

of these.

What happens if 

you don’t have 

type/memory 

safety?

Image: Elisabeth Sparkman



Lack of Safety in C++

# include <iostream>

using namespace std;

int main (void) {

int x = 9;

char s[4];

cin >> s;

cout << "s is: " << s << endl;

cout << "x is: " << x << endl;

}

> g++ -o bounds bounds.cc

> bounds

> bounds

cs205

s is: cs205

x is: 9

> bounds

cs2220

s is: cs2220

x is: 9

> bounds

cs2222222220

s is: cs2222222220

x is: 0

> bounds

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

s is: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

x is: 1633771873

Segmentation fault (core dumped)

User input

s

x 9 > bounds

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

s is: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

x is: 1633771873

Segmentation fault (core dumped)

‘a’

‘a’

‘a’

‘a’

‘a’

‘a’

9‘a’

‘a’

return 

address
‘a’

When main returns, execution jumps to

the return address stored on the stack.

But, the input overwrote that return address!

# include <iostream>

using namespace std;

int main (void) {

int x = 9;

char s[4];

cin >> s;

cout << "s is: " << s << endl;

cout << "x is: " << x << endl;

}

When things go really bad…

If person entering input is clever and mean, 

they can put what they want in the return 

address, and their own code after that to 

jump to!

Buffer Overflow Attack

“Stack Smashing”

Code Red

Buffer Overflows

• Code Red: exploited buffer overflow in 

Microsoft’s IIS (web server)

• Attacker sends excessively long request to web 

server, overflows buffer and puts virus code 

on stack

• Until about 5 years ago: cause of most security 

problems

• Now: still a serious problem

Is the Java Programming Language safe?

Type Safety

Compiler and run-time environment 

ensure that bits are treated as the 

type they represent

Memory Safety

Compiler and run-time environment 

ensure that program cannot 

access memory outside defined 

storage

Control Flow Safety

Can’t jump to arbitrary addresses



Is the Java Programming Language safe?

Type Safety

Compiler and run-time environment 

ensure that bits are treated as the 

type they represent

Memory Safety

Compiler and run-time environment 

ensure that program cannot 

access memory outside defined 

storage

Control Flow Safety

Can’t jump to arbitrary addresses

Most types checked statically

Coercions, array assignments 
type checked at run time

No direct memory access (e.g., 
pointers)

Primitive array type with 
mandatory run-time bounds 
checking

Structured control flow, no 
arbitrary jumps

Java Programming Language

Malicious Code
Can a safe programming language protect 

you from malicious code?

1. Code your servers in it to protect from buffer 

overflow bugs

2. Only allow programs from untrustworthy origins 

to run if the are programmed in the safe 

language

Safe Languages?

• But how can you tell program was written in 
the safe language?

– Get the source code and compile it (most 
vendors, and all malicious attackers refuse to 
provide source code)

– Special compilation service cryptographically signs 
object files generated from the safe language 
(SPIN, [Bershad96])

– Verify object files preserve safety properties of 
source language (Java)

JVML

javac   

Compiler    

malcode.java

Java

Source 

Code

malcode.class

JVML 

Object

Code

JavaVM

Alice User Alice wants to know JVML code 

satisfies Java PL’s safety properties.

Does JVML satisfy Java PL’s safety 

properties?

Java Virtual Machine

• Small and simple to implement

• All VMs will run all programs the same way

• Secure 



Implementing the JavaVM

load class into memory

set the instruction pointer to point to the 

beginning of main

while (there is more to do) { 

fetch the next instruction

execute that instruction

}

Some other issues we will talk about later... (e.g., Garbage 

collection – need to reclaim unused storage) 

Java Byte Codes
• Stack-based virtual machine

• Small instruction set: 202 instructions (all are 

1 byte opcode + operands)

– Intel x86: ~280 instructions (1 to 17 bytes long!)

• Memory is typed (but imprecisely)

• Every Java class file begins with magic number 

3405691582 

= 0xCAFEBABE in base 16

Stack-Based Computation

push – put something on the top of the stack

pop – get and remove the top of the stack

Stack

push 2 2

push 3 3

add
Does 2 pops, pushes sum

5

Some Java Instructions

Opcode Mnemonic Description

0 nop Does nothing

1 aconst_null Push null on the stack

3 iconst_0 Push int 0 on the stack

4 iconst_1 Push int 1 on the stack

…

Some Java Instructions

Opcode Mnemonic Description

18 ldc <value> Push a one-word (4 bytes) 

constant onto the stack

ldc “Hello”

ldc 2220

Constant may be an int, float or String

The String is really a reference to an entry in 

the string constant table!  The strange String 

semantics should make more sense now.

Arithmetic

Opcode Mnemonic Description

96 iadd Pops two integers from the 

stack and pushes their sum

iconst_2

iconst_3

iadd



Arithmetic

Opcode Mnemonic Description

96 iadd
Pops two integers from the stack and 

pushes their sum

97 ladd
Pops two long integers from the stack 

and pushes their sum

…

106 fmul
Pops two floats from the stack and 

pushes their product

…

119 dneg
Pops a double from the stack, and 

pushes its negation

Java Byte Code Instructions

0: nop

1-20: putting constants on the stack

96-119: arithmetic on ints, longs, floats, doubles

What other kinds of instructions do we need?

Other Instruction Classes

Control Flow (~20 instructions)

if, goto, return

Method Calls (4 instructions)

Loading and Storing Variables (65 instructions)

Creating objects (1 instruction)

Using object fields (4 instructions)

Arrays (3 instructions)

> javap -c Sample1
Compiled from Sample1.java

public class Sample1 extends java.lang.Object {

public Sample1();

public static void main(java.lang.String[]);

}

Method Sample1()

0 aload_0

1 invokespecial #1 <Method java.lang.Object()>

4 return

Method void main(java.lang.String[])

0 getstatic #2 <Field java.io.PrintStream err>

3 ldc #3 <String "Hello!">

5 invokevirtual #4 <Method void println(java.lang.String)>

8 iconst_1

9 invokestatic #5 <Method void exit(int)>

12 return

public class Sample1 {

static public void main (String args[]) {

System.err.println ("Hello!");

System.exit (1); } }

Does JVML satisfy JavaPL’s safety 

properties?

iconst_2 push integer constant 2 on stack

istore_0 store top of stack in variable 0 as int

aload_0 load object reference from variable 0

No!   This code violates Java’s type rules.

JVML

javac   

Compiler    

malcode.java

Java

Source 

Code

malcode.class

JVML 

Object

Code

JavaVM

Alice User Alice wants to know JVML 

code satisfies Java PL’s 

safety properties.

Bytecode

Verifierif OK



Charge

• Next: what the verifier does, security policies 

in Java

Remember to send your team requests 

by Friday, and be ready to present your 

project ideas next class.


