
Fall 2010
UVa

David Evans

cs2220: Engineering Software

Image from www.clean-funny.com, GoldenBlue LLC.

Class 21:

Hair-Dryer

Attacks

Plan for Today

• Recap: Java Platform Security

• Trusted Computing Base: should we trust

Java’s?

• Hair-Dryer Attacks

Project Design Documents

1. A description of your project: what it will do and why it is
useful, fun, or interesting.

2. A high-level description of your design, including a module
dependency diagram showing the most important modules.

3. A description of your implementation and testing strategy
including:

– how you will divide the work amongst your team

– how you will order the work to support incremental development

– how you will do unit testing and integration testing

– a list of milestones and a schedule for achieving them, leading to a
completed project on December 7

4. A list of questions

Due: on paper, beginning of class Tuesday

Schedule Design Review meetings (link on course site)

Recap: Java Platform

javac

Compiler

malcode.java

Java

Source

Code

malcode.class

JVML

Object

Code

JavaVM

Alice User

Bytecode

Verifierif OK

Running Mistyped Code

> java Simple

Exception in thread "main" java.lang.VerifyError:

(class: Simple, method: main signature:

([Ljava/lang/String;)V)

Register 0 contains wrong type

.method public static main([Ljava/lang/String;)V

…

iconst_2

istore_0

aload_0

iconst_2

iconst_3

iadd

…

return

.end method
> java –noverify Simple

result: 5

Running Mistyped Code

> java –noverify Simple
Unexpected Signal : EXCEPTION_ACCESS_VIOLATION

(0xc0000005) occurred at PC=0x809DCEB

Function=JVM_FindSignal+0x1105F

Library=C:\j2sdk1.4.2\jre\bin\client\jvm.dll

Current Java thread:

at Simple.main(Simple.java:7)

…

#

HotSpot Virtual Machine Error : EXCEPTION_ACCESS_VIOLATION

Error ID : 4F530E43505002EF

Please report this error at

http://java.sun.com/cgi-bin/bugreport.cgi

#

Java VM: Java HotSpot(TM) Client VM (1.4.2-b28 mixed mode)

.method public static main([Ljava/lang/String;)V

…

ldc 2220

istore_0

aload_0

iconst_2

iconst_3

iadd

…

.end method

Recap: Trusted Computing Base

javac

Compiler

malcode.java

Java

Source

Code

malcode.class

JVML

Object

Code

JavaVM

Alice User

Bytecode

Verifierif OK

Policy

Trusted Computing Base

Trusted Computing Base

• The part of the system that must be trusted to

behave correctly for the desired security

properties to be guaranteed

• Should we trust the Java platform TCB?

Building Trust

• Simplicity

• Extensive validation

• Design Process

There are two ways of constructing a software design: One

way is to make it so simple there are obviously no

deficiencies and the other way is to make it so complicated

that there are no obvious deficiencies. Tony Hoare

Boeing 787 Dreamliner delay conspiracy theories

“Rather, he thinks avionics software is hung up by the

effects of the RTCA/DO-178b standard, which certifies

avionics software and in his opinion causes

unnecessary delays in the delivery of same. In

yesterday’s call, Boeing executives … downplayed the

avionics software lag, but conceded they welcome

more time to test it.”

Verifier (should be) Conservative

JVML programs

Safe programs

Verifiable programs

(Slide from Nate Paul’s ACSAC talk)

Complexity Increases Risk

JVML programs

Safe programs

Verifiable programs

Bug

(Slide from Nate Paul’s ACSAC talk)

The Worst JVML Instruction

jsr [branchbyte1] [branchbyte2]

Operand Stack

... ⇒ ..., address

Description

The address of the opcode of the instruction immediately following this jsr

instruction is pushed onto the operand stack as a value of type

returnAddress. The unsignedbranchbyte1 and branchbyte2 are used to

construct a signed 16-bit offset, where the offset is (branchbyte1 << 8) |

branchbyte2. Execution proceeds at that offset from the address of this jsr

instruction. The target address must be that of an opcode of an instruction

within the method that contains this jsr instruction.

Notes

Note that jsr pushes the address onto the operand stack and ret gets it out of

a local variable. This asymmetry is intentional.

http://java.sun.com/docs/books/vmspec/2nd-edition/html/Instructions2.doc7.html

public class JSR {

static public void main (String args[]) {

try {

System.out.println("hello");

} catch (Exception e) {

System.out.println ("There was an exception!");

} finally {

System.out.println ("I am finally here!");

}

}

}

Try-Catch-Finally

Method void main(java.lang.String[])

0 getstatic #2 <Field java.io.PrintStream out>

3 ldc #3 <String "hello">

5 invokevirtual #4 <Method void println(java.lang.String)>

8 jsr 35

11 goto 46

14 astore_1

15 getstatic #2 <Field java.io.PrintStream out>

18 ldc #6 <String "There was an exception!">

20 invokevirtual #4 <Method void println(java.lang.String)>

23 jsr 35

26 goto 46

29 astore_2

30 jsr 35

33 aload_2

34 athrow

35 astore_3

36 getstatic #2 <Field java.io.PrintStream out>

39 ldc #7 <String "I am finally here!">

41 invokevirtual #4 <Method void println(java.lang.String)>

44 ret 3

46 return

public class JSR {

static public void main (String args[]) {

try {

System.out.println("hello");

} catch (Exception e) {

System.out.println (“... exception!");

} finally {

System.out.println ("I am finally");

}

}

}

Exception table:

from to target type

0 8 14 <Class java.lang.Exception>

0 11 29 any

14 26 29 any

29 33 29 any

Vulnerabilities in JavaVM

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9

V
u

ln
e

ra
b

il
it

ie
s

R
e

p
o

rt
e

d

Years Since First ReleaseJuly 1996 July 2005

From Nathanael Paul and David Evans, Comparing Java and .NET security: Lessons Learned

and Missed, Computers & Security, 2006. http://www.cs.virginia.edu/~evans/pubs/cs06/

Where are They?

Verification 12

API bugs 10

Class loading 8

Other or unknown 2

Missing policy checks 3

Configuration 4

DoS attacks (crash, consumption) 5

several of these were because of jsr complexity

Low-level vs. Policy Security

Low-level Code Safety

Type safety, memory safety, control flow safety

Enforced by Java bytecode verifier and run-time checks in VM

Needed to prevent malcode from circumventing any policy
mechanism

Policy Security

Control access and use of resources (files, network, display,
etc.)

Enforced by Java class

Hard part is deciding on a good policy

Is this really the whole TCB?

javac

Compiler

malcode.java

Java

Source

Code

malcode.class

JVML

Object

Code

JavaVM

Alice User

Bytecode

Verifierif OK

Policy

Trusted Computing Base

Bytecode Verifier

Checks JVML code satisfies safety properties:

– Simulates program execution to know types are
correct, but doesn’t need to examine any
instruction more than once

– After code is verified, it is trusted: is not checked
for type safety at run time (except for casts, array
stores)

Key assumption: when a value is written to a

memory location, the value in that memory location

is the same value when it is read.

Violating the Assumption

…

// The object on top of the stack is a SimObject

astore_0

// There is a SimObject in location 0

aload_0

// The value on top of the stack is a SimObject

If a cosmic ray hits the right bit of memory, between the

astore and aload, the assumption might be wrong.

Can you really blame cosmic rays when

your program crashes?

• IBM estimate: one cosmic-

ray bit error per 256

megabytes per month

• For people running big

datacenters, this is a real

problem

• If your processor is in an

airplane or in space risk is

much higher But, can an attacker take

advantage of this?

Improving the Odds

• Set up memory so that a single bit error is

likely to be exploitable

• Mistreat the hardware memory to increase

the odds that bits will flip

Following slides adapted (with permission) from Sudhakar

Govindavajhala and Andrew W. Appel, Using Memory Errors

to Attack a Virtual Machine, July 2003.

Making Bit Flips Useful
Fill up memory with Filler objects, and one Pointee object:

class Filler { class Pointee {

Pointee a1; Pointee a1;

Pointee a2; Pointee a2;

Pointee a3; Filler f;

Pointee a4; int b;

Pointee a5; Pointee a5;

Pointee a6; Pointee a6;

Pointee a7; Pointee a7;

} }

Filling Up Memory

Pointee p = new Pointee ();

ArrayList<Filler> fillers = new ArrayList<Filler> ();

try {

while (true) {

Filler f = new Filler ();

f.a1 = p; f.a2 = p; f.a3 = p; …; f.a7 =p;

fillers.add (f);

}

} catch (OutOfMemoryException e) { ; }

a1

a2

a3

a4

a5

a6

a7

F
il

le
r

O
b

je
ct

a1

a2

f

b

a5

a6

a7

P
o

in
te

e
O

b
je

ct

a1

a2

a3

a4

Filler Object

Wait for a bit flip…

• Remember: there are lots of

Filler objects (fill up all of

memory)

• When a bit flips, good chance

(~70%) it will be in a field of a

Filler object and it will now

point to a Filler object instead

of a Pointee object

a1

a2

a3

a4

a5

a6

a7

F
il

le
r

O
b

je
ct

a1

a2

f

b

a5

a6

a7

P
o

in
te

e
 O

b
je

ct

a1

a2

a3

a4

Filler Object

Type Violation

After the bit flip, the

value of f.a2 is a

Filler object, but

f.a2 was declared

as a Pointee object!

a1

a2

a3

a4

a5

a6

a7

F
il

le
r

O
b

je
ct

a1

a2

f

b

a5

a6

a7

P
o

in
te

e
 O

b
je

ct

a1

a2

a3

a4

Filler Object

Can an attacker exploit this?

Finding the Bit Flip
Pointee p = new Pointee ();

ArrayList<Filler> fillers = new ArrayList<Filler> ();

try {

while (true) {

Filler f = new Filler ();

f.a1 = p; f.a2 = p; f.a3 = p; …; f.a7 =p;

fillers.add (f);

}

} catch (OutOfMemoryException e) { ; }

while (true) {

for (Filler f : fillers) {

}

Finding the Bit Flip
Pointee p = new Pointee ();

ArrayList<Filler> fillers = new ArrayList<Filler> ();

try {

while (true) {

Filler f = new Filler ();

f.a1 = p; f.a2 = p; f.a3 = p; …; f.a7 =p;

fillers.add (f);

}

} catch (OutOfMemoryException e) { ; }

while (true) {

for (Filler f : fillers) {

if (f.a1 != p) { // bit flipped!

…

} else if (f.a2 != p) {

…

}

}

Violating

Type Safety

Filler f = (Filler) e.nextElement ();

if (f.a1 != p) { // bit flipped!

Object r = f.a1; //

Filler fr = (Filler) r; // Cast is checked at run-time

Declared Type

f.a1 Pointee

f.a1.b int

fr == f.a1 Filler

fr.a4 == f.a1.b Pointee

class Filler { class Pointee {

Pointee a1; Pointee a1;

Pointee a2; Pointee a2;

Pointee a3; Filler f;

Pointee a4; int b;

Pointee a5; Pointee a5;

Pointee a6; Pointee a6;

Pointee a7; Pointee a7;

} }

Violating

Type Safety

Filler f = (Filler) e.nextElement ();

if (f.a1 != p) { // bit flipped!

Object r = f.a1;

Filler fr = (Filler) r; // Cast is checked at run-time

f.a1.b = 1524383; // Address of the SecurityManager

fr.a4.a1 = null; // Set it to a null

// Do whatever you want! No security policy now…

new File (“C:\thesis.doc”).delete ();

class Filler { class Pointee {

Pointee a1; Pointee a1;

Pointee a2; Pointee a2;

Pointee a3; Filler f;

Pointee a4; int b;

Pointee a5; Pointee a5;

Pointee a6; Pointee a6;

Pointee a7; Pointee a7;

} }

Getting a Bit Flip

• Wait for a Cosmic Ray

– You have to be really, really patient… (or move

machine out of Earth’s atmosphere)

• X-Rays

– Expensive, not enough power to generate bit-flip

• High energy protons and neutrons

– Work great - but, you need a particle accelerator

• Hmm….

50-watt spotlight bulb

Between 80° -100°C,
memory starts to
have a few failures

Attack applet is
successful (at least
half the time)!

Hairdryer works too,
but it fries too
many bits at once

Picture from Sudhakar Govindavajhala

Using Heat

Should Anyone be Worried?

Java virtual machine

Recap

Verifier assumes the value you write is the same value

when you read it

By flipping bits, we can violate this assumption

By violating this assumption, we can violate type safety:

get two references to the same storage that have

inconsistent types

By violating type safety, we can get around all other

security measures

Project Design Descriptions due Tuesday

Sign up for design review meetings

