cs2220: Engineering Software

Class 22:
Graphical User

Xerox Star

Interfaces

Fall 2010
UVa
David Evans

Plan for Today

* History of Interactive Computing
* Building GUlIs in Java

Design Reviews this week!

IBM 705
(1954)

supervised by Claude.S

eractive drawing

Computer as “Clerk”:
Augmenting Human Intellect

In such a future working relationship between human problem-
solver and computer 'clerk,” the capability of the computer for
executing mathematical processes would be used whenever it
was needed. However, the computer has many other
capabilities for manipulating and displaying information that can
be of significant benefit to the human in nonmathematical
processes of planning, organizing, studying, etc. Every person
who does his thinking with symbolized concepts (whether in the
form of the English language, pictographs, formal logic, or
mathematics) should be able to benefit significantly.

Douglas Engelbart, Augmenting Human Intellect (1962)

Engelbart’s
Demo (1968)

First Mouse

Papers and folders
Videoconferencing
Email

Hypertext
Collaborative editing

monday afternoon

december 9
3:45 p.m./arena

Chairman:

DR. D. C. ENGELBART
Stanford Research Institute
Menlo Park, California

a research center
for augmenting human
intellect

This session is entirely devoted to a presentation by Dr.
Engelbart on a computer-based, interactive, muiticonsole
display system which is being developed at Stanford Re-
search Institute under the sponsorship of ARPA, NASA and
RADC. The system is being used as an experimental lab-
oratory for investigating principles by which interactive
computer aids can augment intellectual capability. The
techniques which are being described will, themselves,
be used to augment the presentation

The session will use an on-line, closed circuit television
hook-up to the SRI computing system in Menlo Park.

ing th,

4 ‘minals to the system,
the remainder of the

http://www.sri.com/news/storykits/1968video.html L'de for-that pirose.

Doug Engelbart’s Mouse (1968)

Claude Shannon, “Theseus” (1950)

“We see the quickest gains
emerging from (1) giving the
human the minute-by-minute
services of a digital computer
equipped with computer-
driven cathode-ray-tube
display, and (2) developing
the new methods of thinking
and working that allow the
human to capitalize upon the
computer’s help. By this same
strategy, we recommend that
an initial research effort
develop a prototype system of
this sort aimed at increasing
human effectiveness in the
task of computer
programming.”

Medal of Technology 2000

Douglas Engelbart, Augmenting Human Intellect (1962)

Click 51t 10 execute file name commands

=3

Reaty:
Select [1le n&nes with the mouse
san Red-Copy, Vel-Copy /Rensne, Blue-Deise | ™ Cioar]

Xerox Alto

sk (SysDir.» "

Tages: 037 [Foges T

Files listed: 60 [Files Liswed: 0

Files selected 0 Deleter 0 [Files sclecteds 0 Detersi 0

Copy /Rename: 0 Comy: 0 [Copy /Renamer s Copy: 0
o Di

Pinball-eary run,
POLYGONSRUN.

Xerox PARC, 1973

_ Apple

vents the
personal

Apple Lisa

1983

Lisa Interface

Customfze
| Reverse Palish

| Adding Machine

| Show Tape
| Hide Tape
| Advency Fase

http://www.guidebookgallery.org/screenshots/lisaos10

Any real progress since then?

Mac OSX

Microsoft Surface

Designing GUIs

Requires lots of skill

Psychology, Cognitive Science

User studies

Good taste

Read Donald Norman’s and Ed Tufte’s books

Building GUIs

¢ Like all Programming
— Encapsulation, Abstraction, Specification
— Testing: especially hard
* Unique-ish Aspects
— Event-Driven (network programming also like this)
— Multi-Threaded (network, others)
— Huge APIs

Model-View-Controller
Invented at PARC in 1970s (Smalltalk)
Model: domain data and logic
View: presents model
Controller: receives input and alters model
Goal: abstraction

separate display from model
separate control interface

Java GUI Toolkits

———
" Checkbox
)]
o :
AWT Swing
Abstract Window Toolkit (since JDK 1.2)
Looks like Java real reason for Swing
coming later...

Frames

java.lang.Object

‘java.awt.Component ‘

Main windows are JFrame objects

| java.awt.Container |

java.awt.Window

|javax.swing.JFrame |

JFrame frame = new JFrame("Swing GUI");

?

Window Title

JFrame Methods

// inherited from java.awt.Window

public void pack()
MODIFIES: this
EFFECTS: Causes this Window to be sized to fit the
preferred size and layouts of its subcomponents.

// inherited from java.awt.Component
public void setVisible(boolean b)
MODIFIES: this, display
EFFECTS: If b, shows this. Otherwise, hides this.

Swing Application

import javax.swing.*;

public class Main {
private static void showGUI() {
//Create and set up the window.
JFrame frame = new JFrame("Swing GUI");
frame.pack();
frame.setVisible(true);

}

{.i,'lc-l@h—?&-q

public static void main(String args|[]) {
javax.swing.SwingUtilities.invokeLater(new Runnable() {
public void run() { showGUI(); }
N
}
}
Based on Sun’s Swing tutorials:
http://java.sun.com/docs/books/tutorial/uiswing/learn/examplel.html

Adding to a Frame

public java.awt.Container getContentPane()
EFFECTS: Returns the contentPane object for this.

in java.awt.Containter:
public Component add(Component c)
MODIFIES: this
EFFECTS: Appends c to the end of this container.

What can you add?

in java.awt.Container:
Component public Component add(Component c)
Container JComponent

AbstractButton

...and hundreds (?) more subtypes in API

GUIs and Subtyping

In the process of making the Sketchpad system operate, a few very general
functions were developed which make no reference at all to the specific types of

entities on which they operate. These general functions give the Sketchpad CO m pO ne ntS N
system the ability to operate on a wide range of problems. The motivation for
making the functions as general as possible came from the desire to get as much SketCh pa d

result as possible from the programming effort involved. For example, the general
function for expanding instances makes it possible for Sketchpad to handle any
fixed geometry subpicture. The rewards that come from implementing general
functions are so great that the author has become reluctant to write any
programs for specific jobs.

Each of the general functions implemented in the Sketchpad system abstracts,
in some sense, some common property of pictures independent of the specific
subject matter of the pictures themselves.

Ivan Sutherland, Sketchpad: a Man-Machine Graphical @ FO\

—_ —~ _—

o L 7
Communication System, 1963 (major influence on Alan Kay s,

inventing OOP in 1970s)

Adding Components Layout

import javax.swing.*;

public class Main {

private static void showGUI() { // in Container:
//Create and set up the window. public void setLayout(LayoutManager mgr)
JFrame frame = new JFrame("Swing GUI"); K
java.awt.Container content = frame.getContentPane(); MODIFIES: this

content.add(new JLabel ("Yo!"));
content.add(new JButton ("Click Me"));

EFFECTS: sets the layout manager to mgr

frame.pack(); il for this container.
frame.setVisible(true); —
)

What happened to “Yo!”?

}
LayoutManager Implementations Adding Components
import javax.swing.*;
import java.awt.FlowLayout;
public class Main {
| FlowLayout ‘ | BoxLayout ‘ ’ BorderlLayout ‘ private static void showGUI() {
//Create and set up the window.
o — =20 | I Bextayoutbemo [=[=13] T LE® {Frame frame = new JFrame("Swing GUI");
II@E Bution 1 Buton 1 (PAGE_START) java.awt.Container content = frame.getContentPane();
Bution 2 content.setLayout(new FlowLayout());
CLELE) | ZRisLE EE 1230 5 LE_END) content.add(new JLabel ("Yo!"));
Lansiianed Buiond content.add(new JButton ("Click Me"));
Il Long Names Butan PAGEEND) frame.pack();
. frame.setVisible(true);
...about 30 more in API! }

http://iava.sun.com/docs/books/tutorial/uiswing/layout/visual.html

Don’t try this at home?

import javax.swing.*;
import java.awt.*;

public class Main {
private static void showGUI() {

//Create and set up the window.
JFrame frame = new JFrame("Swing GUI");
java.awt.Container content = frame.getContentPane();
content.setLayout(new FlowLayout());
content.add(frame);
frame.pack();
frame.setVisible(true);

}

Exception in thread "AWT-EventQueue-0"
java.lang.lllegalArgumentException: adding container's parent to itself

Making Buttons Do Something

public void addActionListener(ActionListener I)
MODIFIES: this

EFFECTS: Adds an ActionListener | to the button.

java.awt.event
interface ActionlListener extends EventListener {
void actionPerformed (ActionEvent e)
EFFECTS: anything
Note: this method is called when an action occurs.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

class ButtonListener implements ActionListener {
public void actionPerformed (ActionEvent e) {

System.out.println ("Got a button press:” +e);

}

}

public class Main {
private static void showGUI() {

JFrame frame = new JFrame("Swing GUI");
java.awt.Container content = frame.getContentPane();
content.setLayout(new FlowLayout());
content.add(new JLabel ("Yo!"));
JButton button = new JButton ("Click Me");
button.addActionListener(new ButtonListener());
content.add(button);
frame.pack();
frame.setVisible(true);

Action Events

Got a button press: java.awt.event.ActionEvent[ACTION_PERFORMED,cmd=Click
Me, when=1163559916342,modifiers=Button1] on
javax.swing.JButton[,27,5,82x26,alignmentX=0.0,alignmentY=0.5,
border=javax.swing.plaf.BorderUIResourceSCompoundBorderUIResource @29ab3e
,flags=296,maximumSize=,minimumSize=,
preferredSize=,defaulticon=,disabledlcon=,disabledSelectedicon=,
margin=javax.swing.plaf.InsetsUIResource[top=2,left=14,bottom=2,right=14],paint
Border=true,paintFocus=true,
pressedicon=,rolloverEnabled=true,rollovericon=,rolloverSelectedicon=,
selectedlcon=,text=Click Me,defaultCapable=true]

class ButtonListener implements ActionListener {
public void actionPerformed (ActionEvent e) {
if (e.getActionCommand().equals ("On")) {
System.out.printin("On!");
} else if (e.getActionCommand().equals("Off")) {
System.out.printin("Off!");
Yelse {
System.out.printin("Unrecognized button press!");
}
}
}

public class Main {
private static void showGUI() {

ButtonListener bl = new ButtonListener();
JButton onButton = new JButton ("On");
onButton.addActionListener(bl);
content.add(onButton);

JButton offButton = new JButton ("Off");
offButton.addActionListener(bl);
content.add(offButton);

Activating/Deactivating

// in JButton:
void setEnabled(boolean b)
MODIFIES: this
EFFECTS: If b, enables this.
Otherwise, disables this.

class ButtonListener implements ActionListener {
public void actionPerformed (ActionEvent e) {

if (e.getActionCommand().equals ("On")) {
System.out.printin("On!");

} else if (e.getActionCommand().equals("Off")) {
System.out.printin("Off!");

}else {
System.out.printin("Unrecognized button press!"); } } }

public class Main {
private static void showGUI() {

ButtonListener bl = new ButtonListener();

JButton onButton = new JButton ("On");

onButton.addActionListener(bl);

content.add(onButton);

JButton offButton = new JButton ("Off");

offButton.addActionListener(bl);

content.add(offButton); Can we make clicking “On” enable
the “Off” button (and vice versa)?

Inner Classes

* Added to JDK 1.1 (no JavaVM support)
* Define a class inside a scope

* |t has access to variables in the containing
scope including private instance variables!

What deficiency in Java is this making up for?

No lambda! There is no way in Java to dynamically
construct a procedure. Inner classes provide a more
cumbersome, less expressive (but easier to typecheck
statically) substitute.

public class Main {
private static void showGUI() {
JFrame frame = new JFrame("Swing GUI");
java.awt.Container content = frame.getContentPane();
content.setLayout(new FlowLayout());
final JButton onButton = new JButton ("On");
final JButton offButton = new JButton ("Off");

class ButtonListener implements ActionListener {
public void actionPerformed (ActionEvent e) {
if (e.getActionCommand().equals ("On")) {
onButton.setEnabled(false);
offButton.setEnabled(true);

} else if (e.getActionCommand().equals("Off")) {
onButton.setEnabled(true);
offButton.setEnabled(false);

}

}
h
ButtonlListener bl = new ButtonListener();
onButton.addActionListener(bl);
content.add(onButton);

Anonymous Classes

No need to give inner classes names!

var = new Superclass () {
// override methods here

public class Main {
private static void showGUI() {
JFrame frame = new JFrame("Swing GUI");
java.awt.Container content = frame.getContentPane();
content.setLayout(new FlowLayout());
final JButton onButton = new JButton ("On");
final JButton offButton = new JButton ("Off");

ActionListener bl = new ActionListener () {
public void actionPerformed (ActionEvent e) {
if (e.getActionCommand().equals ("On")) {
onButton.setEnabled(false);
offButton.setEnabled(true);
} else if (e.getActionCommand().equals("Off")) {
onButton.setEnabled(true);
offButton.setEnabled(false);
}
) } What is the actual type of bl?
onButton.addActionListener(bl);
content.add(onButton);

Not just Buttons

Component
7
JComponent

/P—\
AbstractButton

‘JToggIeButton ‘ JButton

‘JCheckBox ‘ ‘JRadioButton ‘

http://java.sun.com/docs/books/tutorial/uiswing/components/button.html

Awkward design:
JMenu is a button — action is to popup

JPopupMenu Menus TOO
JMenu contains a list of IMenultem’s
Why is JMenu a subtype of J]Menultem? JComponent
[
AbstractButton

|JMenuBar ‘ ‘JPopupMenu ‘

JButton

|JRadioButtonMenuItem ‘ |JCheckboxMenuItem

http://java.sun.com/docs/books/tutorial/uiswing/components/menu.html|

Concurrency in GUls

* Responsiveness of GUI depends on multiple
threads

* Swing thread types:
— Initial threads (start program)
— One event dispatch thread (all event-handling code)

— Worker threads (do time-consuming tasks in
background)

Swing framework does most of the work — programmer
doesn’t need to create threads

Event Dispatch

Why is there only one event dispatch thread?

Hint: did we need to synchronize?

One event thread means all compute-intensive work should
be done in worker threads. (Otherwise interface freezes like
ps4 ImageChop).

Worker Threads
Create a
class javax.swing.SwingWorker<T,\V> background
thread to do
compute-

intensive tasks

http://download.oracle.com/javase/6/docs/api/javax/swing/SwingWorker.html
(added to JDK 1.6)

Simplicity

Charge is the
ultimate
sophistication.

* GUI APIs are subtyping and
inheritance paradises,
concurrency morasses

* GUI APIs are huge and complex

— Java’s is especially complex because
of AWT + Swing, and portability

Creating a simpler GUI requires
more complex programming

