€s2220:
Engineering
Software

Class 24:
Garbage
Collection

Fall 2010
UVa
David Evans

A
AT

flickr cc: k_iksbaI;ygn.-"'

Menu

Memory review: Stack and Heap
Garbage Collection

Mark and Sweep

Stop and Copy

Reference Counting
Java’s Garbage Collector

Exam 2

Out Thursday, due next Tuesday
Coverage: anything in the class up to last lecture
Main Topics
Type Hierarchy: Subtyping, Inheritance, Dynamic
Dispatch, behavioral subtyping rules,
substitution principle
Concurrency abstraction: multi-threading, race
conditions, deadlocks
Java Security: bytecode verification, code safety,
policy enforcement

You will have 5 days for Exam 2, but it is designed to be short enough that you
should still have plenty time to work on your projects while Exam 2 is out.

Stack and Heap Review

Stack Heap

public class Strings {

public static void test () {
A StringBuffer sb = new StringBuffer("hello");
By =

static public void main (String args[]) { SN

test ();

N \\{iva.lang.StringBuffer
3 test();

2
}
}

When do the stack and heap look like this?

Stack and Heap Review

Stack Heap

public class Strings {
public static void test () {
StringBuffer sb = new StringBuffer
("hello");

static public void main (String args|]) {

Sb \\jiva.lang.StringBuffer
test ();

2 %okt ();
}

}

Garbage Heap

Stack Heap

public class Strings {
public static void test () {
StringBuffer sb = new StringBuffer
("hello");
}

static public void main (String args[]) {
while (true) test ();
}

}

Explicit Memory Management

C/C++: programmer uses
free (pointer)

public class Strings { ..
public static void test () { to indicate that the storage
StringBuffer sb = pointer points to should be
new StringBuffer ("hello"); reclaimed.
free (sb);
}
. Very painful!
static public void main (String args[]) { Missing free: memory leak
) while (true) test (); Dangling references: to free’d objects
}

bl Ll@s U%Ql E (/SJ:/! X
ddi Oy e i
~ic i Garbage Collection

5

System needs to reclaim stordge on the heap&
used by garbage objects B

How can it identify garbage objects?
Sk + dacs Q\o\m\s & pon g bnet

How come we don’t need to garbage collect the
stack?

Mark and Sweep

John McCarthy, 1960 (first LISP implementation)
Start with a set of root references

Mark every object you can reach from those
references
Sweep up the unmarked objects

In a Java execution, what are the root references?

References on the stack.

public class Phylogeny {
static public void main (String args[]) {
SpeciesSet ss = new SpeciesSet ();
... (open file for reading)
while (...not end of file...) {
Species current = new Species (...name from file...,
...genome from file...);

ss.insert (current);

}
}

public class SpeciesSet {
private ArrayList<Species> els;
public void insert (Species s) {
if (getIndex (s) < 0) gls.add (s);

}} this.

Stack /@

/{ame:

Bottom of Stack —>)
String[]: args /'(genome:
o
Ca
s root: Species ‘_
®
2
3 ss: SpeciesSet | “CATAG” |
o
5)
current: Species
\
c:é'\’ this: SpecldeSét
oY) e
s species 1]
2 Top of Stack
? P name: ®
"325555;7!'355?;‘" (string args(l) { genome: e—

SpeciesSet ss = new SpeciesSet ();

.. (open file for reading)

while (..not end of ile...){
Species current = new Species (...name from file..., ..genome from file...);
ss.insert (current);} }

-

List< ;
public void insert (Species) { if (getindex (s) < 0) els.add (s); } }

After els.add (s)...

Stack

/'

“in.spc”

ﬁ

name:

Bottom of Stack —>

String[]: args / genome:
x
=
<
o root: Species o/ 1 -
p v |-
<
g ss: SpeciesSet | “CATAG” |
5 . name: b

current: Species

genome: e

€
g this: SpeciesSet
i s: Species | CAGTG | I) | f\|*0

Top of Stack e L2

name: ®— name: ®

publicclass Phylogeny {
static public void main (String args[]) {
SpeciesSet ss = new SpeciesSet ();
..(open file for reading)
while (..not end of file...){

Species current = new Species (...name from file.., ..genome from file...;

ss.insert (current); } }

public class SpeciesSet {
private ArrayList<Species> els;

public void insert (Species s) { if (getindex (s) < 0) els.add (s); } }

genome: e

genome: e—

SpeciesSet.insert returns...

Stack

/'

name:

Bottom of Stack —>
String]]: args / genome:
kS
o root: Species P ,,
<
g ss: SpeciesSet | “CATAG” |
5 . name: ®
current: Species
genome: e
-4
a this: SpeciesSet
st Species [roaote | M [o |
Top of Stack L -

name: = name:

genome: e

public class Phylogeny {
static public void main (String ares(l) {
SpeciesSet ss = new SpeciesSet ();
.. (open file for reading)
while (..not end of ile...){
Species current = new Species (...name from file.., ..genome from file...;
ss.insert (current);} }

public class SpeciesSet {
private ArrayList<Species> els;
public void insert (Species s) { if (getindex (s) < 0) els.add (s); } }

Finish while loop...

Bottom of Stack —>
String[]: args

root: Species

ss: SpeciesSet

Stack

/

/’

name:
genome:

— 3

o -
| “CATAG” |

urewAuasojAyd

name: -
genome: @~

“Goat”

| “cacTe” |

current: Species
Top of Stack

2 | o1 |
P (3

-~

= name:
genome: e—

name:
genome: e—

public class Phylogeny {
static public void main (String ares(l) {
Speciesset s = new SpeciesSet ();
..(open file for reading)
while (..not end of ile...){
Species current = new Species (...name from file...,
ss.insert (current);} }

.genome from file...);

public class SpeciesSet {
private ArrayList<Species>els;
public void insert (Species s) {if (getindex (s) < 0) els.add (s); } }

Garbage Collection

Stack

/

name:

/ genome:

Bottom of Stack —
String[]: args

[-
| “CATAG” |

\

P 2
name: o name: L
genome: e— genome: e—

root: Species

1

ss: SpeciesSet
Top of Stack —

urewrAuasojAyd

name: ®
genome: @

[“cacte”

public class Phylogeny {
static public void main (String ares(l) {
Speciesset ss = new SpeciesSet ();
.. (open file for reading)
while (..not end of ile...){
Species current = new Species (...name from file.., ..genome from file...;
ss.insert (current);} }

public class SpeciesSet {
private ArrayList<Species> els;
public void insert (Speciess) { f (getindex (5) < 0) els.add (s);} }

Mark and Sweep Algorithm
&oj
Sa@\“o\zifi e = ook releenws (alled fiom dack oslolals)

M%;ifo\)éa;m*\‘v—t. 13{:4@%30) i
“O\Nﬂk\m = ig)
‘Co&o/’\”\'\ (0\')@*1* [6.(,5«\\'{) {
V\nl\vlc Qa

& 5 il o
Furegh, (Dot o) o bDer ¢
°) 5

nQ,»J"“AM"
464“\1(= (\(qu‘\\\\’ﬁ;

Mark and Sweep Algorithm

active = all objects on stack
while (!active.isEmpty ())
={}
foreach (Object a in active)

mark a as reachable (non-garbage)
foreach (Object o that a points to)

if o is not marked
newactive = newactive U { o }

active =

Garbage Collection

“in.spc”

Bottom of Stack —>

name:

- String[]: args / genome:
=
<
o root: Species P ,,
% p Call b [Coue |-
2 els:
E ss: SpeciesSet “ ”
3 P C, — | CATAG |
5 Top of Stack —- - - P

ame:

genome: @~

“Goat”

Initialize Mark and Sweeper: ” ~
active = all objects on stack | CAGTG | :/I/’ | I\H I
name: name: ®7

genome: e

genome: e—

Garbage Collection

Bottom of Stack —>
String[]: args

/ genome:

Stack / P

name:

x
=
<
o root: Species Pr—
? p @/ 1 Duck” |«
2 els:
E ss: SpeciesSet “ ”
3 p @ — CATAG
5 Top of Stack — o]

name:

active = all objects on stack
while (!active.isEmpty ())

genome: @

“Goat”

={} |

“CAGTG” |

-2

i

foreach (Object a in active)
mark a as reachable (non-garbage)
foreach (Object o that a points to)
if 0 is not marked
newactive = newactive U {0}
active =

/
name: ®
genome: e

Garbage Collection

Stack /
@/

ss: SpeciesSet (C]

Bottom of Stack —>
String[]: args

root: Species

o =

name:
genome: -

urewAuasojAyd

Top of Stack

name:

o=

genome: @~

active = all objects on stack

while (lactive.isEmpty ())

={} | “cacTe” |

foreach (Object a in active)

mark a as reachable (non-garbage)
foreach (Object o that a points to)

name: ®
genome: e—

name: ®
genome: e—

if o is not marked
newactive = newactive U {0}

active =

Garbage Collection

Bottom of Stack —
String[]: args

root: Species

/ genome:

Stack /

name:

“Duck” |«

ss: SpeciesSet

“CATAG”

urewrAuasojAyd

Top of Stack

active = all objects on stack
while (!active.isEmpty ())
={}
foreach (Object a in active)
mark a as reachable (non-garbage)
foreach (Object o that a points to)
if o is not marked
newactive = newactive U {0}
active =

name: ®
genome: @

“CAGTG”

name: ®
genome: e

name: ®
genome: @—

Garbage Collection

Bottom of Stack —>
String[]: args

x

>

<

S root: Species @/ 1

3 ss: SpeciesSet (C]

g- Top of Stack
name:
genome:

active = all objects on stack

while (!active.isEmpty ())

Stack /
name:
/ genome:

“in.spc”

o -

={} [“cacTe”

foreach (Object a in active)
mark a as reachable (non-garbage)
foreach (Object o that a points to)
if o is not marked
newactive = newactive U {o}
active =

2 | y1=— |
pd v

name:
genome:

name:
genome:

Garbage Collection

Bottom of Stack —
String[]: args

Stack /
/ genome:

name:

x
>
<
o root: Species 1 “ ”
u§ P ©/ Duck” |«
<
E ss: SpeciesSet | i Z |
g- Top ofpStack O CATAG
3 name: -
genome: e
active = all objects on stack » »
. Lo Goat
while (!active.isEmpty ())
={} “CAGTG”

foreach (Object a in active)
mark a as reachable (non-garbage)
foreach (Object o that a points to)
if o is not marked
newactive = newactive U {o}

active =

name: - name:

genome: o— genome: @—
”Elf” '/Frogfr
“CGGTG” “CGATG”

Garbage Collection

Bottom of Stack —>

String[]: args

Stack /
name:

\

|-

genome:

=
| “CATAG” |

x

=

<

"E root: Species @/ 3
2)

3 ss: SpeciesSet (C]

ng'- Top of Stack

active = all objects on stack
. Lo “Goat”
while (!active.isEmpty ())

name: ®
genome: e

={} [“cacte” |

foreach (Object a in active)
mark a as reachable (non-garbage)
foreach (Object o that a points to)
if 0 is not marked
newactive = newactive U {0}
active =

pd ¥
name: name: *
genome: e genome: e—

“Frog”

sweep () // remove unmarked objects on heap “CGGTG” “CGATG”

After main returns...
Stack

Bottom of Stack —> name:

String[]: args / genome:
root: Species — 1 ,_

“CATAG”

ss: SpeciesSet
Top of Stack —

urewAuasdojAyd

name: ©9
genome: o

active = all objects on stack » »
while (!active.isEmpty ())
={} [“cagre”
foreach (Object a in active)
mark a as reachable (non-garbage)

foreach (Object o that a points to) genome:
if o is not marked

newactive = newactive U {o } -
ug (g “Frog”

active =
sweep () // remove unmarked objects on heap “CGGTG” “CGATG”

name: 9
genome: o—

2 ¢ [

Garbage Collection
Stack
Bottorgpbtastk —s—————

name:
genome:

“Duck” |«

“CATAG”

active = all objects on stack
while (!active.isEmpty ())

={} |

foreach (Object a in active)
mark a as reachable (non-garbage)
foreach (Object o that a points to)
if o is not marked
newactive = newactive U {0}
active =

name: o
genome: o
J
“CAGTG” | { »
o]
o

name: ©7
genome: o—

“Frog”

sweep () // remove unmarked objects on heap “CGGTG”

Problems with Mark and Sweep

Fragmentation: free space and alive objects will
be mixed
— Harder to allocate space for new objects
— Poor locality means bad memory performance
* Caches make it quick to load nearby memory
Multiple Threads

One stack per thread, one heap shared by all
threads

All threads must stop for garbage collection

Stop and Copy

Stop execution

Identify all reachable objects (as in Mark and Sweep)
Copy all reachable objects to a new memory area

After copying, reclaim the whole old hea

* Solves fragmentation problem

* Disadvantages:

— More complicated: need to change stack a

object pointers to new heap
— Need to save enough memo

— Expensive if most objects are not garbage

ry to copy

Generational Collectors

Observation:

— Most objects are short-lived
« Temporary objects that get garbage collected right away

— Other objects are long-lived
« Data that lives for the duration of execution

Separate storage into regions
Short term: collect frequently
Long term: collect infrequently
Stop and copy, but move copies into longer-lived areas

Reference Counting

What if each object kept track of the number
of references to it?

If the object has zero references, it is garbage!

Reference Counting

class Recycle {
private String name; private Vector pals;
public Recycle (String name) { this.name = name; pals = new Vector (}; }
public void addPal (Recycle r) { pals.addElement (r); } (/w\\ﬂ'"

|)

public class Garbage { |
static public void main (String args[]) { name:

Is:
Recycle alice = new Recycle ("alice"); f:f:, ”é
Recycle bob = new Recycle ("bob"); q\ (¢R -
bob.addPal (alice); P~
—_ 4 Bob
alice = new Recycle ("coleen"); |
bob = new Recycle ("dave");

)
} bo b AP rame: J_F[“j

} pals: e
refs: O

/

Reference Counting

class Recycle {
private String name; private Vector pals;
public Recycle (String name) { this.name = name; pals = new Vector (); }
public void addPal (Recycle r) { pals.addElement (r); }

| =

public class Garbage { | [|
static public void main (String args[]) { name:

Is:
Recycle alice = new Recycle ("alice"); f:f:‘ 2.-
Recycle bob = new Recycle ("bob"); -

bob.addPal (alice); | “Coleen” | | “Bob” |
alice = new Recycle ("coleen"); r r
—_—
bob = new Recycle ("dave"); 1 [| 1 |]| |
} name: J name: J |
} pals: e pals: e
refs: 1 refs: 1

Reference Counting

class Recycle {
private String name; private Vector pals;
public Recycle (String name) { this.name = name; pals = new Vector (); }
public void addPal (Recycle r) { pals.addElement (r); }
}

public class Garbage {
static public void main (String args[]) {
Recycle alice = new Recycle ("alice");
Recycle bob = new Recycle ("bob");
bob.addPal (alice);
alice = new Recycle ("coleen");
__bob = new Recycle ("dave");
}
}

Can reference counting ever fail to
reclaim unreachable storage?

Circular References

class Recycle {
private String name; private Vector pals;
public Recycle (String name) { this.name = name; pals = new Vector (); }
public void addPal (Recycle r) { pals.addElement (r); }

) r
public class Garbage { | [|
static public void main (String args[]) { . n:{:_e' o

Recycle alice = new Recycle ("alice"); W |F')ef5'.§1\1

Recycle bob = new Recycle ("bob"); i

bob.addPal (alice);
\/

bob = null; name: ¢ |

alice.addPal (bob);
} pals: e

} refs:

Reference Counting Summary

Advantages

Can clean up garbage right away when the last
reference is lost

No need to stop other threads!

Disadvantages
Need to store and maintain reference count
Some garbage is left to fester (circular references)
Memory fragmentation

Java’s Garbage Collector

Mark and Sweep collector
Generational
Can call garbage collector directly: System.gc ()

but, this should hardly ever be done (except
for “fun”)

Python’s Garbage Collector
Reference counting:
To quickly reclaim most storage
Mark and sweep collector (optional, but on by default):
To collect circular references

java.lang.Object.finalize()

protected void finalize() throws Throwable

Called by the garbage collector on an object when garbage collection determines that there are no more
references to the object. A subclass overrides the finalize method to dispose of system resources or to perform
other cleanup. The general contract of finalize is that it is invoked if and when the Java™ virtual machine has
determined that there is no longer any means by which this object can be accessed by any thread that has not yet

died, except as a result of an ac| S .
finalized. The finalize method 'umfr\ary. . .
usual purpose of finalize, howef finalize is called when garbage collector reclaims object
example, the finalize method fa no guarantee when it will be called

transactions to break the conng 3 N P i .
The finalize method of class Ob after finalizer, JVM has to check you didn’t do something stupid

override this definition. its protected because subclasses need to override it (but no one
The Java programming languag: other than the JVM itself should ever call it!)
object. It is guaranteed, however, tra e edu tnd es | Zey oL Er-y
synchronization locks when finalize is invoked. If an unSHFRI VeI [G| probably never need to

exception ored and finalization of that object tel il ffirelfea f de. Onl
After the finalize method has been invoked for an objisa etk UUENERUBELISEE LU

has again determined that there is no longer any meatau A SN -SRI ROV EIE

has not yet died, including possible actions by other qie]oJ{=Ia &R RV TN Ty N i =TTy SR {8 at which
point. thg object maY be disc.ardedA have associated (

The finalize method is never invoked more than once Y
Any exception thrown by the finalize method causes tl resources.
ignored.

d, the

al machine

class Recycle {
private String name;
private ArrayList<Recycle> pals;
public Recycle (String name) {
this.name = name; pals = new ArrayList<Recycle> (); }
public void addPal (Recycle r) { pals.add (r); }
protected void finalize () { System.err.printin (name + " is garbage!"); }

public class Garbage {
static public void main (String args[]) {
Recycle alice = new Recycle ("alice");
Recycle bob = new Recycle ("bob");
bob.addPal (alice);

> java Garbage
First collection:

- " " Second collection:
alice = new Recycle ("coleen");

System.out.printin("First collection:"); alice is ga rbage!

System.gc (); bob is garbage!
bob = new Recycle ("dave");

System.out.printin("Second collection:");

System.gc ();

class Recycle {
private String name;
private ArrayList<Recycle> pals;
public Recycle (String name) { this.name = name; pals = new ArrayList<Recycle> (); }
public void addPal (Recycle r) { pals.add (r); }
protected void finalize () { System.err.println (name + " is garbage!"); }

}

public class Garbage {

static public void main (String args[]) {
System.err.printin(Runtime.getRuntime().freeMemory() + " bytes free!");
Recycle alice = new Recycle ("alice");
Recycle bob = new Recycle ("bob");
bob.addPal (alice);
alice = new Recycle ("coleen");
System.err.printIn("First collection:");
System.err.printin(Runtime.getRuntime().freeMemory() + " bytes free!"); | 125431952 bytes free!

zvs:em.gc 0; — Runtimel) freeM)+ bytes freel”) First collection:
.err.| . . + L
ystem.err.printin(Runtime.getRuntime!) reeMemory|) ytes free 125431952 bytes frEe!

bob = new Recycle ("dave"); b

System.err.println("Second collection:"); 125933456 bytes free!
System.gc (); Second collection:
System.err.printin(Runtime.getRuntime().freeMemory() + " bytes free!"); 125933216 bytes free!

bob is garbage!

Note running the garbage alice is garbage!

collector itself uses memory!

class Recycle {
private String name;
private ArrayList<Recycle> pals;
public Recycle (String name) {
this.name = name; pals = new ArrayList<Recycle> (); }
public void addPal (Recycle r) { pals.add (r); }
protected void finalize () {
Garbage.truck = this;
System.err.printin (name + " is garbage!" + this.hashCode()); }

}

public class Garbage {
static public Recycle truck;
static public void main (String args(]) {
printMemory();
while (true) {
Recycle alice = new Recycle ("alice");
printMemory();
System.gc ();
}
}
}

Charge

In Java: be happy you have
a garbage collector to
clean up for you

In C/C++: need to
deallocate storage
explicitly

Why is it hard to write a
garbage collector for C?

In the real world: clean up
after yourself and
others!

Keep working on your projects
Exam 2 out Thursday Garbage Collectors
(COAX, Seoul, 18 June 2002)

