
cs2220: Engineering Software

Class 3:

Java Semantics

Fall 2010

University of Virginia

David Evans

Menu

Java Semantics

Stack and Heap

The Stack and Heap

String s = new String (“hello”);

Objects live on the heap

new creates an object on the heap

(Almost) equivalent to: String s = “hello”;

s java.lang.String:
“hello”

Local variables live on the stack

May point to Objects in heap

The Stack and Heap

String s = new String (“hello”);

String t = s;

s java.lang.String:
“hello”

The Stack and Heap

String s = new String (“hello”);

String t = s;

s = new String (“goodbye”);

s java.lang.String:
“hello”

t

Primitive Types

Almost everything in Java is an Object

The exceptions are primitive types:

boolean, byte, char, double, float, int, long, short

Primitive types have different semantics!

Values of a primitive type are stored directly

on the stack

Primitive Types

String s = new String (“hello”);

String t = s;

s = new String (“goodbye”);

int i = 2200;

int j = i;

s java.lang.String:
“hello”

t

java.lang.String:
“goodbye”

i

j

Can we see the difference between

primitive types and objects?

Does it matter?

Does it matter if something is

stored on the stack or the heap?

Equality

x == y

Object Types: same objects

Primitive Types: same value

x.equals (y)

Object Types: method that compares

values of objects

Primitive Types: doesn’t exist

Preview: the equals method is defined in java.lang.Object, which is the ultimate

superclass of all classes. Other classes override equals to mean different things.

Mutability

When an Object is mutated, all references to the

Object see the new value.

StringBuffer sb = new StringBuffer (“hi”);

StringBuffer tb = sb;

tb.append (“gh”);

Immutable/Mutable Types

Types can be mutable or immutable

Objects of an immutable type never change value

after they are created

String is immutable, StringBuffer is mutable

String.concat creates a new String object

StringBuffer.append mutates this object

Note: StringBuilder is almost identical to StringBuffer.

public class Strings {

public static void test (String [] args) {

String s = new String ("hello");

String t = new String ("hello");

StringBuffer sb = new StringBuffer ("he");

StringBuffer tb = sb;

String s1 = "hello";

String t1 = "hello";

sb.append ("llo");

tb.append (" goodbye!");

s.concat (" goodbye!");

t = s.concat (" goodbye!");

}

}

What are the values of s, t, sb and tb now?

Which of these are/must be true:

a) s == t

b) s1 == t1

c) s == s1

d) s.equals (t)

e) sb == tb

f) t.equals (tb)

public class Strings {

public static void test (String [] args) {

String s = new String ("hello");

String t = new String ("hello");

StringBuffer sb = new StringBuffer ("he");

StringBuffer tb = sb;

String s1 = "hello";

String t1 = "hello";

sb.append ("llo");

tb.append (" goodbye!");

s.concat (" goodbye!");

t = s.concat (" goodbye!");

}

}

What are the values of s, t, sb and tb now?

Which of these are/must be true:

a) s == t

b) s1 == t1

c) s == s1

d) s.equals (t)

e) sb == tb

f) t.equals (tb)

Java Language Specification
(Section 3.10.5: String Literals)

Each string literal is a reference (§4.3) to an

instance (§4.3.1, §12.5) of class String

(§4.3.3). String objects have a constant

value. String literals-or, more generally,

strings that are the values of constant

expressions (§15.28)-are "interned" so as to

share unique instances, using the method

String.intern.

Summary

Java sacrificed simplicity and coherence for

performance: primitive types are not Objects

Cost: programmers have to think about stack,

heap, semantics differences

Benefit: saves memory, perhaps better

performance, more like C/C++

Reading before next class: Chapters 3 and 9

PS2: Part I posted now; Part II posted later.

