
cs2220: Engineering Software

Class 6:

Defensive Programming

Fall 2010

University of Virginia

David Evans

Menu

Recap Validation

Hopelessness of both testing and analysis!

Defensive Programming

Testing

Fishing for Bugs

Each test examines one path through the

program

Exhaustive

All possible inputs: infeasible for all non-trivial

programs

Path-Complete

All possible paths through the program

Path-Complete Testing?

public static int [] histogram (int [] a)

// unspecified

{

int maxval = 0;

for (int i = 0; i < a.length; i++) {

if (a[i] > maxval) {

maxval = a[i];

}

}

int histo [] = new int [maxval + 1];

for (int i = 0; i < a.length; i++) {

histo[a[i]]++;

}

return histo;

}

How many paths?

Arrays are bounded in java:

maximum size is 231-1

First loop:

1 + 2 + 22 + … + 2231-1

Second loop: path completely

determined by first loop

Path-Complete Testing

Insufficient

One execution of a path doesn’t cover all behaviors

Often bugs are missing paths

Impossible

Most programs have an “infinite” number of paths

Branching

Can test all paths

Loops and recursion

Test with zero, one and several iterations

Coverage Testing

Statement Coverage:

number of statements executed on at least one test

number of statements in program

Can we achieve 100% statement coverage?

Testing Recap

• Testing can find problems, but cannot prove

your program works

– Since exhaustive testing is impossible, select test

cases with maximum likelihood of finding bugs

– A successful test case is one that reveals a bug in

your program!

• Typically at least 40% of cost of software

project is testing, often >80% of cost for

safety-critical software

Is it really hopeless?

Since we can’t test all possible paths through a

program, how can we increase our confidence

that it works?

Analysis

• Make claims about all possible paths by
examining the program code directly

– Testing (dynamic analysis): checks exactly one
program path

– Static analysis: reasons about all possible program
paths

• Use formal semantics of programming language
to know what things mean

• Use formal specifications of procedures to know
that they do

Hopelessness of Analysis

It is impossible to correctly determine if any

interesting property is true for an arbitrary

program!

The Halting Problem: it is impossible

to write a program that determines if

an arbitrary program halts.

Compromises

• Use imperfect automated tools:

– Accept unsoundness and incompleteness

– False positives: sometimes an analysis tool will report

warnings for a program, when the program is actually okay

(unsoundness)

– False negatives: sometimes an analysis tool will report no

warnings for a program, even when the program violates

properties it checks (incompleteness)

Java compiler warnings attempt to do this

• Use informal reasoning

Dealing with Hopelessness

Since both testing and analysis are

hopeless in general what can we do?

Design for Testability Design for Analyzability

Programming

Defensively

Assertions

Statement ::= assert booleanExpression optStringExpression;

booleanExpression ::=

[any Java expression that evaluates to a boolean value]

optStringExpression ::= ε | : stringExpression

stringExpression ::=

[any Java expression that can be converted to a String

value]

Semantics: To evaluate an assert statement, evaluate the booleanExpression.

If the booleanExpression evaluates to true, do nothing. If it is false, the

assertion fails and an AssertionException thrown. If there is an optional

stringExpression, it is evaluated (and converted to a String) and included in the

AssertionException.

Enabling Assertions

Without this, assert

does nothing!

Examples

public class TestClass {

public static double divide(int a, int b) {

assert b != 0;

return (double) a / b;

}

public static void main(String[] args) {

System.out.println (divide (3, 4));

System.out.println (divide (3, 0));

}

0.75

Exception in thread "main" java.lang.AssertionError

at ps3.TestClass.divide(TestClass.java:6)

at ps3.TestClass.main(TestClass.java:16)

Examples

public class TestClass {

public static double divide(int a, int b) {

assert b != 0 : "Division by zero";

return (double) a / b;

}

public static void main(String[] args) {

System.out.println (divide (3, 4));

System.out.println (divide (3, 0));

}

0.75

Exception in thread "main" java.lang.AssertionError: Division by zero

at ps3.TestClass.divide(TestClass.java:6)

at ps3.TestClass.main(TestClass.java:16)

Tricky Example

public static double divide(int a, int b) {

assert b != 0 : divide(a, b);

return (double) a / b;

}

public static void main(String[] args) {

System.out.println (divide (3, 4));

System.out.println (divide (3, 0));

}

0.75

Exception in thread "main" java.lang.StackOverflowError

at ps3.TestClass.divide(TestClass.java:6)

at ps3.TestClass.divide(TestClass.java:6)

at ps3.TestClass.divide(TestClass.java:6)

at ps3.TestClass.divide(TestClass.java:6)

at ps3.TestClass.divide(TestClass.java:6)

…

Where should we use assert?

public static int [] histogram (int [] a)

{

int maxval = 0;

for (int i = 0; i < a.length; i++) {

if (a[i] > maxval) {

maxval = a[i];

}

}

int histo [] = new int [maxval + 1];

for (int i = 0; i < a.length; i++) {

histo[a[i]]++;

}

return histo;

}

1. To give useful debugging

information when a

REQUIRES precondition

is violated.

2. To check assumptions on

which our code relies.

Judicious use of asserts:

saves debugging time

provides useful documentation

increases confidence in results

How many assertions?

About 5% of the statements in a good Java program should be asserts!

Gunnar Kudrjavets, Nachiappan Nagappan, Thomas Ball.

Assessing the Relationship between Software Assertions and

Code Quality: An Empirical Investigation

http://research.microsoft.com/pubs/70290/tr-2006-54.pdf

200 assertions per 1000 lines of code

Exceptions

Violating Requires

• In C/C++: can lead to anything

– Machine crash

– Security compromise

– Strange results

• In Java: often leads to runtime exception

When an assert fails, it generates an Exception.

Other failures also generate Exceptions.

Use Exceptions to Remove Preconditions

public static int biggest (int [] a)

// REQUIRES: a has at least one element

// EFFECTS: Returns the value biggest

// element of a.

public static int biggest (int [] a)

throws NoElementException

// REQUIRES: true

// EFFECTS: If a has at least one element, returns the

// value biggest element of a. Otherwise, throws

// NoElementException.

Using Biggest with Requires

public static int biggest (int [] a)

// REQUIRES: a has at least one element

// EFFECTS: Returns the value biggest

// element of a.

public static void main(String[] args) {

int [] x = new int [0];

System.out.println ("Biggest: " + biggest(x));

…

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 0

at ps3.TestClass.biggest(TestClass.java:6)

at ps3.TestClass.main(TestClass.java:37)

Implementation

public static int biggest (int [] a) {

int res = a[0];

for (int i = 1; i < a.length; i++) {

if (a[i] > res) res = a[i];

}

return res;

}

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 0

at ps3.TestClass.biggest(TestClass.java:6)

at ps3.TestClass.main(TestClass.java:37)

public static int biggest (int [] a) {

assert a != null && a.length > 0;

int res = a[0];

for (int i = 1; i < a.length; i++) {

if (a[i] > res) res = a[i];

}

return res;

}

Exception in thread "main" java.lang.AssertionError

at ps3.TestClass.biggest(TestClass.java:9)

at ps3.TestClass.main(TestClass.java:46)

Using Biggest with Exception

public static int biggest (int [] a)

throws NoElementException

// REQUIRES: true

// EFFECTS: If a has at least one element, returns the

// value biggest element of a. Otherwise, throws

// NoElementException.

public static void main(String[] args) {

int [] x = new int [0];

System.out.println ("Biggest: " + biggest(x));

…

TestClass.java:line 41 Unhandled exception type NoElementException

This is a compile-time error: you cannot even run this code.

Catching Exceptions

public static int biggest (int [] a) throws NoElementException

// EFFECTS: If a has at least one element, returns the

// value biggest element of a. Otherwise, throws

// NoElementException.

try {

System.out.println ("Biggest: " + biggest(x));

} catch (NoElementException e) {

System.err.println ("No element exception: " + e);

}

Statement ::= CatchStatement

CatchStatement ::= try Block Handler* OptFinally

Handler ::= catch (ExceptionType Var) Block

OptFinally ::= finally Block | ε

Block ::= { Statement* }

Throwing Exceptions

What is NoElementException?

public static int biggest (int [] a) throws NoElementException {

if (a == null || a.length == 0) {

throw new NoElementException();

}

int res = a[0];

for (int i = 1; i < a.length; i++) {

if (a[i] > res) res = a[i];

}

return res;

}

Exceptions are Objects

java.lang.Object

java.lang.Throwable

java.lang.Exception

ps2.NoElementException

We will cover subtyping and

inheritance soon.

class NoElementException

extends Exception { }

public Document(String fname, int window)

REQUIRES fname is the pathname for a

readable file

EFFECTS Creates a new document from the

file identified by fname using window size

window.

public Document(String fname, int window)

throws FileNotFoundException

EFFECTS If fname is a readable file, creates a

new document from that file using

window size window. Otherwise, throws

FileNotFoundException.

Using Document

LabeledGraph g = new LabeledGraph();

Document d;

try {

d = new Document(file, window);

g.addNode(file);

} catch (FileNotFoundException fnfe) {

System.err.println("Error: cannot open file: " + file + " [" + fnfe + "]");

} catch (DuplicateNodeException e) {

System.err.println("Error: duplicate file: " + file);

}

Mantra

Be Assertive!

Use assertions judiciously

Exception Exceptionally

Use exceptions to deal with exceptional

circumstances

Handling exceptions is tricky: code can jump

from anywhere inside to the catch handler!

Charge

Next class: designing and using exceptions

exceptionally

Reading: finish Chapter 5 and Chapter 10

“Surprise” quiz possible on Tuesday

Problem Set 3: Designing and Implementing

Data Abstractions

will be posted by tomorrow, due Sept 21

