
cs2220 Notes: Class 7 

 

What are the advantages and disadvantages of using abstract data types?  

 

Components of Data Abstractions 

 

Ways to create new objects of the type  

   Creators: create new objects of the ADT from parameters of other types 

   Producers: create new objects of the ADT from parameters of the ADT type (and other types) 

 

   In Java, operations that produce new objects of the datatype are known as constructors. 

Unlike methods, they are declared with no return type, and their name must match the 

name of the datatype. 

 

Ways to observe properties: observers 

Ways to change properties: mutators  

 

What are the minimal operations a (useful) data abstraction must provide?  

 

 

 

Specification of the StringStack Data Abstraction 

 

public class StringStack  

   OVERVIEW: A StringStack represents a mutable last-in-first-out stack where all   

          elements are Strings. 

          A typical stack is [ e_n-1, e_n-2, ..., e_1, e_0 ] where e_n-1 is the top of the stack. 

   public StringStack() 

       EFFECTS: Initializes this as an empty stack.  

   public void push(String s) 

      MODIFIES: this 

      EFFECTS: Pushes s on the top of this.   

         For example, if this_pre = [ e_n-1, e_n-2, ..., e_1, e_0 ], 

           this_post = [ s, e_n-1, e_n-2, ..., e_1, e_0 ] 

   public String pop() throws EmptyStackException  

      MODIFIES: this 

      EFFECTS: If this is empty, throws EmptyStackException.  Otherwise, 

         returns the element on top of this and removes that element from this. 

         For example, if this_pre = [ e_n-1, e_n-2, ..., e_1, e_0 ], 

            this_post = [ e_n-2, ..., e_1, e_0 ] and the result is e_n-1.  

   public String toString()  

      EFFECTS: Returns a string representation of this.  

  



import java.util.ArrayList; 

import java.util.EmptyStackException; 

import java.util.List; 

 

/** 

 * OVERVIEW: A StringStack represents a last-in-first-out stack where all elements are Strings. 

 *     A typical stack is [ e_n-1, e_n-2, ..., e_1, e_0 ] where e_n-1 is the top of the stack. 

 */ 

public class StringStack { 

   // Rep: 

   private List<String> rep; 

    

   /** 

    * EFFECTS: Initializes this as an empty stack. 

    */ 

   public StringStack() { 

      rep = new ArrayList<String>(); 

   } 

    

   /** 

    * MODIFIES: this 

    * EFFECTS: Pushes s on the top of this.   

    *      For example, if this_pre = [ e_n-1, e_n-2, ..., e_1, e_0 ], 

    *         this_post = [ s, e_n-1, e_n-2, ..., e_1, e_0 ] 

    */ 

   public void push(String s) { 

      rep.add(s); 

   } 

 

   /** 

    * MODIFIES: this 

    * EFFECTS: If this is empty, throws EmptyStackException.  Otherwise, 

    *    returns the element on top of this and removes that element from this. 

    *    For example, if this_pre = [ e_n-1, e_n-2, ..., e_1, e_0 ], 

    *         this_post = [ e_n-2, ..., e_1, e_0 ] and the result is e_n-1. 

    */ 

   public String pop() throws EmptyStackException { 

      try { 

         return rep.remove(rep.size() - 1); 

      } catch (IndexOutOfBoundsException e) { 

         assert rep.size() == 0; 

         throw new EmptyStackException(); 

      } 

   } 

    

  … // toString not shown 

} 


