
cs2220: Engineering Software

Class 8:

Implementing Data Abstractions

Fall 2010

University of Virginia

David Evans

Menu

Implementing Data Abstractions

Abstraction Function

Representation Invariant

Recap: Abstract Data Types

Separate what you can do with data from how it

is represented

Client interacts with data through provided

operations according to their specifications

Implementation chooses how to represent data

and implement its operations

Data Abstraction in Java

A class defines a new data type

Use private instance variables to hide the choice

of representation

private variables are only visible inside the class

public class StringStack {

// Rep:

private List<String> rep;

Up and Down

Abstract Type

Concrete Representation

class implementation

clients

The representation of an abstract data type is

visible only in the class implementation.

Clients manipulate an abstract data type by calling its

operations (methods and constructors)

StringStack

Abstract Type

Concrete Representation

class implementation

clients

StringStack

private List<String> rep;

s.push (“Hello”);

public void push(String s) {

rep.add(s);

}

Advantages/Disadvantages

of Data Abstraction

- More code to write and maintain

- Run-time overhead (time to call method, lost

opportunities because of abstraction)

+ Client doesn’t need to know about

representation

+ Can change rep without changing clients

+ Can reason about clients at abstract level

Choosing a Representation

Representation must store the abstract state

Think about how methods will be implemented

A good representation choice should:

Enable easy implementations of all methods

Allow performance-critical methods to be implemented

efficiently

Use memory efficiently (if the data may be large)

Choosing the rep is the most important decision in implementing a data abstraction

StringStack Representation

Option 1: private String [] rep;

– Recall Java arrays are bounded

– Hard to implement push

Option 2: private List<String> rep;

– Easy to implement all methods

– Performance may be worse than for array

Implementing StringStack

Is this implementation of push correct?

public class StringStack {

// Rep:

private List<String> rep;

/**

* MODIFIES: this

* EFFECTS: Pushes s on the top of this.

* For example, if this_pre = [e_n-1, e_n-2, ..., e_1, e_0],

* this_post = [s, e_n-1, e_n-2, ..., e_1, e_0]

*/

public void push(String s) {

rep.add(s);

}

Could this implementation of push be correct?

It depends…
/**

* MODIFIES: this

* EFFECTS: If this is empty, throws EmptyStackException. Otherwise,

* returns the element on top of this and removes that element from this.

* For example, if this_pre = [e_n-1, e_n-2, ..., e_1, e_0],

* this_post = [e_n-2, ..., e_1, e_0] and the result is e_n-1.

*/

public String pop() throws EmptyStackException {

try {

return rep.remove(0);

} catch (IndexOutOfBoundsException e) {

assert rep.size() == 0;

throw new EmptyStackException();

}

}

public String pop() throws EmptyStackException {

try {

return rep.remove(rep.size() - 1);

} catch (IndexOutOfBoundsException e) {

assert rep.size() == 0;

throw new EmptyStackException();

}

}

Is it correct?

• How can we possibly implement data

abstractions correctly if correctness of one

method depends on how other methods are

implemented?

• How can we possibly test a data abstraction

implementation if there are complex

interdependencies between methods?

What must we know to know

if pop is correct?

/**

* MODIFIES: this

* EFFECTS: If this is empty, throws EmptyStackException. Otherwise,

* returns the element on top of this and removes that element from this.

* For example, if this_pre = [e_n-1, e_n-2, ..., e_1, e_0],

* this_post = [e_n-2, ..., e_1, e_0] and the result is e_n-1.

*/

public String pop() throws EmptyStackException {

try {

return rep.remove(0);

} catch (IndexOutOfBoundsException e) {

assert rep.size() == 0;

throw new EmptyStackException();

}

}

Abstraction Function

The Abstraction Function maps a concrete

state to an abstract state:

AF: C → A

Function from concrete representation to the

abstract notation introduced in Overview

specification.

Abstraction Function for StringStack

/**

* OVERVIEW: A StringStack represents a last-in-first-out stack where all

* elements are Strings.

* A typical stack is [e_n-1, e_n-2, ..., e_1, e_0] where e_n-1 is the top

* of the stack.

*/

public class StringStack {

// Rep:

private List<String> rep;

Correctness of Push

Use abstraction function to show push

satisfies its specification:

AF(rep_post) = [AFString(s)] + AF(rep_pre)

/**

* MODIFIES: this

* EFFECTS: Pushes s on the top of this.

For example, if this_pre = [e_n-1, e_n-2, ..., e_1, e_0],

this_post = [s, e_n-1, e_n-2, ..., e_1, e_0]

*/

public void push(String s) {

rep.add(s);

}

/**

* MODIFIES: this

* EFFECTS: Pushes s on the top of this.

For example, if this_pre = [e_n-1, e_n-2, ..., e_1, e_0],

this_post = [s, e_n-1, e_n-2, ..., e_1, e_0]

*/

public void push(String s) {

rep.add(s);

}

How do we know rep is non-null?

Rep Invariant

Representation Invariant: properties all
legitimate objects of the ADT must satisfy

I: C → boolean

Function from concrete representation
to boolean.

Helps us reason about correctness of methods
independently

Limits the range of inputs for the Abstraction
Function

Reasoning with Rep Invariants

Prove all objects satisfy the invariant before

leaving the implementation code

Assume all objects passed in satisfy the

invariant

REQUIRES: Rep Invariant is true for this (and any other

reachable ADT objects)

EFFECTS: Rep Invariant is true for all new and any modified

ADT object on exit.

All non-private datatype operations have these specification implicitly!

Rep Invariant for StringStack

/**

* OVERVIEW: A StringStack represents a last-in-first-out stack where all

* elements are Strings.

* A typical stack is [e_n-1, e_n-2, ..., e_1, e_0] where e_n-1 is the top

* of the stack.

*/

public class StringStack {

// Rep:

private List<String> rep;

Graph
public class Graph

// OVERVIEW: A Graph is a mutable type that represents an undirected graph. It consists of

// nodes that are named by Strings, and edges that connect a pair of nodes.

// A typical Graph is: < Nodes, Edges > where

// Nodes = { n_1, n_2, …, n_m }

// Edges = { {a_1, b_1}, ..., {a_n, b_n} } (the elements of Edges are unordered sets).

public Graph ()

// EFFECTS: Initializes this to a graph with no nodes or edges: < {}, {} >.

public void addNode (String name) throws DuplicateException

// MODIFIES: this

// EFFECTS: If name is in Nodes, throws DuplicateException.

// Otherwise, adds a node named name to this:

// this_post = < Nodes_pre U { name }, Edges_pre >

public void addEdge (String s, String t) throws NoNodeException, DuplicateException

// MODIFIES: this

// EFFECTS: If s and t are not names of nodes in this, throws NoNodeException. If there is

// already an edge between s and t, throws DuplicateEdgeException. Otherwise, adds an

// edge between s and t to this:

// thispost = < Nodespre, Edgespre U {fnode, tnode} >

Charge

Problem Set 3: Designing and Implementing

Data Abstractions: Due Tuesday

