Lecture 11:

ry of Computation
s inia David Evans
Computer Science http://www.cs.virginia.edu/evans

Menu

¢ Fix proof from last class
e Interpretive Dance!
e Parsimonious Parsing (Parsimoniously)

PS3 Comments Available Today
PS3 will be returned Tuesday

- 5
Lecture 11: Parsimonious Parsing 2 i Compuf‘eyr Scte{llce

Closure Properties of CFLs

If A and B are context free languages then:
AR is a context-free language TRUE

A" is a context-free language TRUE

A is a context-free language (complement)?

A U B is a context-free language TRUE

A N B is a context-free language ?

- 5
Lecture 11: Parsimonious Parsing 3 i Computg.r Scne{lce
LI s DRy Vs

Complementing Non-CFLs

L, ={wwlweZXZ*}is nota CFL.
Is its complement?

Yes. This CFG recognizes is:
whatis | S — 050 | 151 1 0X1 | 1X0

the actual

lnguage? | X > 0X011X110X111X010111¢

Bogus Proof!
S — 0X1 - 01X01 - 0101 € L,

- 5
Lecture 11: Parsimonious Parsing 4 fiiin Computg.r Scne{lce
LT i DNivERsY Vs

CFG forL,, (L.)

All odd length strings arein L_,,,

S = Soaa | Skven

Seven = XY 1 YX
SOdd%ORllRIOII X 5 7ZXZ10
R = 08044 | 1044 Y > 2zvZI1
Z-011

How can we prove this is correct?

- 5
Lecture 11: Parsimonious Parsing 5 i Compuf‘eyr Scte{llce

S.aq generates all s, »or11R1011
odd-length strings &= 050! 1Soa

Proof by induction on the length of the string.
Basis. S, generates all odd-length strings of
length 1. There are two possible strings: 0 and 1.
They are produces from the 34 and 4t rules.

Induction. Assume S,, generates all odd-length
strings of length n for n = 2k+1, k> 0. Show it can
generate all odd-length string of length n+2.

- 5
Lecture 11: Parsimonious Parsing 6 i Compuf‘eyr Scte{llce

Soqs 9enerates all s, sor11R1011
odd-length strings &~ 050! 150u

Induction. Assume S, generates all odd-length strings
of length n for n=2k+1, k> 0. Show it can generate all
odd-length string of length n+2.
All n+2 length strings are of the form abt where ¢ is an n-
length string and a € {0, 1}, b€ {0, 1}. There is some
derivation from S, =+ (by the induction hypothesis). We
can generate all four possibilities for a and b:

00z: S,,,— OR — 00S,,,=* 00r

01z So,,— OR — 01S,,=* 017

107: Sy, — 1R — 10S,,,=* 10t

117: Sy, — 1R — 115, =* 011

= -
m; 1 g 1€ 1
i Computer Science |

Lecture 11: Parsimonious Parsing 7
. Sgven = XY 1 YX

Even Strings | x-zazio

Y—>2zvzil

Show s,.generates the set |7 011
of all even-length strings
that are notinL,,.

Proof by induction on the length of the string.
Basis. Sy, generates all even-length strings of
length O that are notin L. The only length 0
string is €. €isin L, since € = €, so € should not be

generated by Sg,,. Since Sk, does not contain any right
sides that go to ¢, this is correct.

- 5
Lecture 11: Parsimonious Parsing 9 i Comput‘e]r Sme{lce
LI i ezt & Y

Lg
C"“Zsm”"s

Where is English?

r

b,
&
<
§
Q

Described by DFA, NFA,
RegExp, RegGram

Context-Free Languages

CFG forL,, (L.)

S— SOdd l SEven

Seven = XY 1 YX
SOdd%ORllRloll X 5 7ZXZ10
R — 08044 1 1044 Y->zvzil
Z—-011

Proof-by-leaving-as-"Challenge
Problem” (note: you cannot use this
proof technique in your answers)

- 5
Lecture 11: Parsimonious Parsing 8 F] Compuf‘eyr Sctegce

Closure Properties of CFLs

If A and B are context free languages then:
AR is a context-free language TRUE

A" is a context-free language TRUE

A is not necessarily a context-free
language (complement)

A U B is a context-free language TRUE

AN B is a context-free language ? | e for you to solve
(possibly on Exam 1)

- 5
Lecture 11: Parsimonious Parsing 11 F] Comppf‘eyr Sctegce

- 5
Lecture 11: Parsimonious Parsing 10 fiiin Comput‘e]r Sme{lce
LT i ezt & Y

English ¢ Regular Languages

The cat likes fish.
A —

The catl$he dog chasegklikes fisrj.

:I'he ca;\the dogl\the rat bi;\chaseq \Iikes fishj.

This is a pumping lemma proof!

- 5
Lecture 11: Parsimonious Parsing 12 F] Comppf‘eyr Sctegce

LIMITATIONS OF
PHRASE STRUCTURE DESCRIPTION

5.1 We have discussed two models for the structure of language,
2 communication theoretic model based on a conception of language = DA
as a Markov process and corresponding, in a sense, to the minimal
linguistic theory, and a phrase structure model based on immediate = CFQG
constituent analysis. We have sen that the first is surely inadequate
for the purposes of grammar, and that the second is more powerful
than the first, and does not fail in the same way. Of course there
are languages (in our general sense) that cannot be described in
terms of phrase structure, but I do not know whether or not
English i itselfliterally outside the range of such analysis. However,
1 think that there are other grounds for rejecting the theory of phrase
structure as inadequate for the purpose of linguistic description.
The strongest possible proof of the inadequacy of a linguistic
theory is to show that it literally cannot apply to some natural
language. A weaker, but perfectly sufficient demonstration of inade-
quacy would be to show that the theory can apply only clumsily;
that i, to show that any grammar that can be constructed in terms

1
of this theory will be extremely complex, ad hoc, and ‘unrevealing’, Choms ky S

that certain very simple ways of describing grammatical sentences

cannot be accommodated within the associated forms of grammar, Answer

and that certain fundamental formal properties of natural language (S .
yn tactic

mar described above, and the conception of linguistc theory that Structu res,

underlies i, are fundamentally inadequate.

cannot be utilized to simplify grammars. We can gather a good deal
of evidence of this sort in favor of the thesis that the form of gram-

The only way to test the adequacy of our present apparatus is to 1 9 5 7)
attempt to apply it directly to the description of English sentences

- 5
Lecture 11: Parsimonious Parsing 13 i Compuf‘eyr Science

NIVERSITY o ViRGiN

Where is Java? sZ
NS

Current Answer

¢ Most linguists argue that most
natural languages are not context-
free

e But, it is hard to really answer this
question:

eg.,
“The cat the dog the rat bit chased likes fish.” € English?

8¢
< ommn
ww

Described by DFA, NFA,
RegExp, RegGram
7%
Context-Free Languages
Lecture 11: Parsimonious Parsing 15 !'lil‘! COmPHFS\)‘“ }S&ig&fs‘

Lecture 11: Parsimonious Parsing 14 s Computer Science |
Lecture 11: Parsimonious Parsing 16 ﬁﬁﬁ CO‘“P"}S\‘; ,S'Nf\i‘?{}fﬁ‘

€my e

C"‘ZS

Where is Java?

teg

X
ge

)
r

Described by DFA, NFA,
RegExp, RegGram

Context-Free Languages

What is the Java Language?

public class Test {
public static void main(String [] a) { In the Java
printin("Hello World!"); Language
b

Test.java:3: cannot resolve symbol
symbol : method println (java.lang.String)

b

// C:\users\luser\Test.java

public class Test { Not in the Java
public static void main(String [] a) { Language

println ("Hello Universe!");

Test.java:1: illegal unicode escape
35 // C:\users\luser\Test.java

- 5
Lecture 11: Parsimonious Parsing 17 i Compuf‘eyr Science

NIVERSITY o VikGiN

- .
g m T 1€
i} Co pute Science

Lecture 11: Parsimonious Parsing 18 Vi

// C:\users\luser\Test.java
public class Test {
public static void main(String [] a) {

println ("Hello Universe!");
} > javac Test.java

1} r Test.java:1: illegal unicode escape

Scanning error i 1/ Cj\\users\luser\Test.java
Test.java:6: 'class' or 'interface' expected

A

Parsing errors Test.java:7: 'class' or 'interface' expected

A

Test.java:4: cannot resolve symbol
. . symbol : method println (java.lang.Strin
Static semantic errors Igcation: class Tesf € g St

println ("Hello World");
N

4 errors

Lecture 11: Parsimonious Parsing 19

= -
m; 1 g 1€ 1
i Computer Science |

Parsing

S—> S+MIM
M—>M*TI|1T
T — (S) | number

Programming
languages

are (should be)
designed to make
parsing easy,
efficient, and
unambiguous.

uoneaaq

I Parsing

- 5
Lecture 11: Parsimonious Parsing 21 i Computg.r Scne{lce
LI s DRy Vs

Ambiguity

How can one determine if a CFG is ambiguous?

Super-duper-challenge problem: create a program that
solve the “is this CFG ambiguous” problem:

Input: CFG

Output: “Yes” (ambiguous)/"No” (unambiguous)

Warning: Undecidable Problem Alert!
(Not only can you not do this, it is impossible

for any program to do this.) (we will cover undecidable
problems after Spring Break)

Defining the Java Language

{ wlw can be generated by the CFG
for Java in the Java Language
Specification }

{ wla correct Java compiler can build
a parse tree for w }

- 5
Lecture 11: Parsimonious Parsing 20 i Compuf‘eyr SCIE{’lCe

Unambiguous
S— S+SIS *S|(S) | number

(s
OO

O 0 0 @
3 + 2 * 1 3 4+ 2 * 1

- 5
Lecture 11: Parsimonious Parsing 22 fiiin Computg.r Scne{lce
LT i DNivERsY Vs

Lecture 11: Parsimonious Parsing 23

Parsing

S—> S+MIM
M->M*TI| T
T — (S) | number

Programming
languages

are (should be)
designed to make
parsing easy,
efficient, and
unambiguous.

uoneAaq

I Parsing

- 5
Lecture 11: Parsimonious Parsing 24 i Compuf‘eyr SCIE{’lCe

= -
m; 1 g 1€ 1
il Computer Science |

“Easy” and “Efficient”

e “Easy” - we can automate the
process of building a parser from a
description of a grammar

e “Efficient” — the resulting parser can
build a parse tree quickly (linear time
in the length of the input)

S—> S+MIM
M—>M*TI|T
T — (S) | number

Advantages:
e Easy to produce

Recursive Descent

Parsing
Parse() { S(); }
SOA{

try { SQ; expect("+"); M(); }
catch { backup(); } and understand
try { M(); } catch {backup(); } ¢ Can be done for
error(); } any CFG
MO {
try { M(); expect("*"); T(); } catch ... Problems:
try { T(); } catch { backup(); } . Ineff|C|ent_(m|ght
error (); } not even finish)
T0<{ * “Nondeterministic”
try { expect("("); S(); expect(*)”); } catch ...;
try { number(); } catch ...; }

- 5
Lecture 11: Parsimonious Parsing 25 il Compuf‘e’r Sctegce

- 5
Lecture 11: Parsimonious Parsing 26 F] Compuf‘e’r Sctegce

LL(k) (Lookahead-Left)

e A CFG is an LL(k) grammar if it can
be parser deterministically with <
tokens lookahead

S—> S+MIM 1 + 2
M—>M*TIT S—> S+M S>> S+M
T — (S) | number S—o>M

LL(1) grammar

Lecture 11: Parsimonious Parsing 27

Look-ahead Parser
Parse() { S(); }
SO A{

if (lookahead(1, “+")) { S(); eat(“+"); M(); }
else { M();}
MO {
if (lookahead(1, “*")) { M(); eat("*"); T(); }
else { T(); } }
T(
if (lookahead(0, “(")) { eat("("); SQ); eat(™)"); }
else { number();} S>> S+MIM
M—>M*T | T
T — (S) | number

— -
fiii Computer Science

JavaCC

https://javacc.dev.java.net/

e Input: Grammar specification

e Output: A Java program that is a
recursive descent parser for the
specified grammar

| Doesn’t work for all CFGs: only for LL(k) grammars|

Lecture 11: Parsimonious Parsing 29

= -
m; 1 g 1€ 1
il Computer Science |

Lecture 11: Parsimonious Parsing 28 !TET! CO"‘P}‘,FSE'&?;?&E%
g
Language Classes g8,
g8
&y

Described by DFA, NFA,
RegExp, RegGram

e
ava Python Co“te‘ﬂt-ﬂe

Lecture 11: Parsimonious Parsing 30

= -
m; 1 g 1€ 1
i Computer Science |

Next Week

e Monday (2): Office Hours
(Qi Mi in 226D)

e Monday (5:30): TA help session

e Tuesday’s class (Pieter Hooimeyer): starting
to get outside the yellow circle: using
grammars to solve security problems

e Wednesday (9:30am): Office Hours (Qi Mi
in 226D)

e Wednesday (6pm): TAs' Exam Review

e Thursday: exam in class

- 5
Lecture 11: Parsimonious Parsing 31 i Compuf‘eyr SCIE{’lCe

