
1

Class 24: Class 24:

P=NP?P=NP?

David EvansDavid Evans
http://www.cs.virginia.edu/evanshttp://www.cs.virginia.edu/evans

cs302: Theory of Computationcs302: Theory of Computation

University of Virginia Computer ScienceUniversity of Virginia Computer Science

PS6 (the last one)

is due Thursday,

April 24.

Protein model, Berger Lab UC Berkeley

Remaining Exam 2

comments now posted.

2Lecture 24: P=NP?

Final Exam
• Scheduled by registrar:

– Saturday, May 3, 9am-noon (exam is scheduled for 3

hours, but will be designed to take ≤ 1.5 hours)

• No notes or books allowed

– My sense from grading Exam 2 is people used their

notes as a crutch, not helpfully

– Enables “easier” questions and more partial credit

• In class next Tuesday, I will hand out a “preview”

of some of the exam questions and possibly

discuss them

3Lecture 24: P=NP?

Final Exam Topics

• Everything covered through this Thursday:

– Exams 1 and 2 and comments

– Problem Sets 1-6 and comments

– Lectures 1-25

– Sipser, Chapters 0-5, 7

– Additional Readings: Aaronson (spring break), one of

the NP-completeness papers

• Roughly ⅓ Exam 1 material, ⅓ Exam 2 material, ⅓

since Exam 2 (but many individual questions will

combine material from multiple parts)

4Lecture 24: P=NP?

P = NP ?

PNP P

NP

Option 2: P = NP
Option 1: P ⊂ NP

5Lecture 24: P=NP?

Theological Question

If God exists (and is omnipotent), can she

compute anything regular people cannot

compute?

Yes: P ⊂ NP
Being able to always

guess right when

given a decision

makes you more

powerful than having

to try both.

No: P = NP
Being able to always

guess right when

given a decision does

not make you more

powerful than having

to try both.

6Lecture 24: P=NP?

NP-Complete

A language B is in NP-complete if:

2. There is a polynomial-

time reduction from every

problem A ∈ NP to B.
1. B ∈ NP

B

NP

B

NP

Is NP-Complete a Ring or a Circle?

2

7Lecture 24: P=NP?

NP-Complete

PNP P

NP

Option 2: P = NPOption 1: P ⊂ NP

NP-C

= NP-Complete ∪ Tautology

Tautology problems

A = {}; A = Σ*

8Lecture 24: P=NP?

NP-Complete

P

NP-C

Option 1a: P ⊂ NP,

NP-C ∪∪∪∪ P ⊂ NP

Option 1b: P ⊂ NP,

NP-C ∪∪∪∪ P = NP

P

NP-C

Either is possible

9Lecture 24: P=NP?

NP-Complete

A language B is in NP-complete if:

2. There is a polynomial-

time reduction from every

problem A ∈ NP to B.
1. B ∈ NP

B

NP

B

NP

What does NP-Hard look like?

Hard

Not necessary for NP-Hard

10Lecture 24: P=NP?

NP-Hard (if P ⊂ NP)

P

NP-C

Option 1a: P ⊂ NP,

NP-C ∪∪∪∪ P ⊂ NP

Option 1b: P ⊂ NP,

NP-C ∪∪∪∪ P = NP

NP-Hard

P

NP-C

11Lecture 24: P=NP?

NP-Hard (if P = NP)

P

NP

Option 2: P = NP

NP-C

≈ NP-Complete

NP-Hard = All Problems - {A = {}; A = Σ*}

12Lecture 24: P=NP?

NP-Hardness Recap

• If P = NP:

– To show a problem is NP-Hard: show for some

input it outputs “true”, and for some input it

outputs “false”

• If P ⊂ NP:

– To show a problem is NP-Hard: show that there is a

polynomial-time reduction from some known NP-

Complete problem to it

– Showing a problem is NP-Hard means there is no

polynomial time solution for it

3

13Lecture 24: P=NP?

Games and NP-Hardness

14Lecture 24: P=NP?

Papers from Last Class

• (Generalized) Cracker Barrel Puzzle is NP-

Complete

• (Generalized) March Madness is NP-Hard

– Is it NP-Complete also?

• (Generalized) Minesweeper Consistency is NP-

Complete

• ... ?

Are these special cases, or is there something about

“interesting” games that makes them NP-Hard?

What makes a “game” a game?

16Lecture 24: P=NP?

All “Interesting” Games?

Initial Game State

Possible Moves

...

Winning State

What is a “winning path”?

17Lecture 24: P=NP?

Recall: Class NP

A language is in NP if and only if it is decided

by some nondeterministic polynomial time

Turing Machine

A language is in NP if and only if it has a

corresponding polynomial time verifier

That is, there is a certificate that can prove a string is in

the language which can be checked in polynomial time.

18Lecture 24: P=NP?

Game Certificate

• Given a path through a game, can you check if

it is a valid winning path in polynomial time?

def verify(Path p):

return isInitialState(p[0])

&& isWinningState(p[-1])

&& allMovesValid(p)

def allMovesValid(Path p):

if (p.length <= 1) return true;

return isValidMove(p[0], p[1])

&& allMovesValid(p[1:])

4

19Lecture 24: P=NP?

(One-Player) Games in NP

• The maximum number of moves is polynomial

in the size of the game

• There is a polynomial-time procedure for

checking a move (state, state pair) is valid

• There is a polynomial-time procedure for

checking a position is a winner

How could a game be outside NP?

e.g., Hex, Sokoban

?

?

20Lecture 24: P=NP?

Games in P

• The number of possible moves or the number

of moves you need to lookahead to pick the

right move, does not scale with the size of the

game

There is a polynomial-time function from the

game state to the correct move: don’t need to

consider deep paths to select the right move

21Lecture 24: P=NP?

NP-Complete One-Player Games

• In NP: polynomial-time certificate

• Polynomial-time reduction from 3SAT (or any

other NPC problem) to the game

Essentially: no way to know if a move is correct

without looking ahead all the way to the end.

All “fun” one-player games are NP-Complete:

Games inside P are too easy (once you solve them always win)

Games outside NP are too hard

But…we actually play finite versions of these games (in TIME(1))

22Lecture 24: P=NP?

Reduction Proofs

23Lecture 24: P=NP?

Reducing Reduction Proofs

• Conjecture: A has some property Y.

• Proof by reduction from B to A:

– Assume A has Y. Then, we know there is an M that

decides A.

– We already know B does not have property Y.

– Show how to build S that solves B using M.

• Since we know B does not have Y, but having S

would imply B has Y, S cannot exist. Therefore,

M cannot exist, and A does not have Y.

24Lecture 24: P=NP?

Undecidability Proofs

• Conjecture: A has some property Y.

• Proof by reduction from B to A:

– Assume A has Y. Then, we know an M exists.

– We already know B does not have property Y.

– Show how to build S that solves B using M.

• Since we know B does not have Y, but having S would imply B

has Y, S cannot exist. Therefore, M cannot exist, and A does

not have Y.

Undecidability:

Y = “can be decided by a TM”

B = a known undecidable problem (e.g., ATM, HALTTM, EQTM, …)

M = “a TM that decides A”

5

25Lecture 24: P=NP?

NP-Hardness Proofs

• Conjecture: A has some property Y.

• Proof by reduction from B to A:

– Assume A has Y. Then, we know an M exists.

– We already know B does not have property Y.

– Show how to build S that solves B using M.

• Since we know B does not have Y, but having S would imply B

has Y, S cannot exist. Therefore, M cannot exist, and A does

not have Y.

NP-Hardness:

Y = “is NP-Hard”

B = a known NP-Hard problem (e.g., 3-SAT, SUBSET-SUM, …)

M = “a TM that decides A in polynomial-time”

26Lecture 24: P=NP?

The Hard Part

• Conjecture: A has some property Y.

• Proof by reduction from B to A:

– Assume A has Y. Then, we know an M exists.

– We already know B does not have property Y.

– Show how to build S that solves B using M.

• Since we know B does not have Y, but having S

would imply B has Y, S cannot exist.

Therefore, M cannot exist, and A does not

have Y.

27Lecture 24: P=NP?

Example

• Suppose we know ATM is undecidable, but do

not yet know if EQTM is.

EQTM = { <A, B> | A and B are TMs where L(A) = L(B) }

ATM = { <M, w> | M is TM, w is string, w in L(M) }

Conjecture: EQTM is undecidable.

What do we need to do to prove conjecture?

Reduce from ATM to EQTM: show that a solver for

EQTM could be used to solve ATM.

Pitfall #1: Make sure you do reduction in right direction.

Showing how to solve B using M
A
, shows A is as hard as B.

28Lecture 24: P=NP?

Building Solvers

EQTM = { <M1, M2> | M1 and M2 are TMs where L(M1) = L(M2) }

ATM = { <M, w> | M is TM, w is string, w in L(M) }

Reduce from EQTM to ATM: show that MEQ, a solver for

EQTM can be used to solve ATM.

Conjecture: EQTM is undecidable.

Pitfall #2: Get the inputs to the solver to match correctly.

To solve B using M
A
, must transform inputs to B into inputs to A.

B =

A =

MB(<M, w>): machine that decides ATM

Simulate MEQ on <M1, M2>:

M1 = a TM that simulates M running on w

M2 = a TM that always accepts

If it accepts, accept; if it rejects, reject.

29Lecture 24: P=NP?

Legal Transformations

• Undecidability proofs: your transformation

can do anything a TM can do, but must be

guaranteed to terminate

– E.g., cannot include, “simulate M and if it halts,

accept”

• NP-Hardness proofs: your transformation

must finish in polynomial time

– E.g., cannot include, “do an exponential search to

find the answer, and output that”

30Lecture 24: P=NP?

Example: KNAPSACK Problems

• You have a collection of

items, each has a value and

weight

• How to optimally fill a

knapsack with as many items

as you can carry

Scheduling: weight = time,

one deadline for all tasks

Budget allocation: weight = cost

6

31Lecture 24: P=NP?

General KNAPSACK Problem

• Input: a set of n items

{<name0, value0, weight0>, …,

<namen-1, valuen-1, weightn-1>}

and maxweight

• Output: a subset of the input items such that
the sum of the weights of all items in the
output set is ≤ maxweight and there is no
subset with weight sum ≤ maxweight with a
greater value sum

Note: it is not a decision problem. Can we make it one?

32Lecture 24: P=NP?

def knapsack (items, maxweight):
best = {}
bestvalue = 0
for s in allPossibleSubsets (items):

value = 0
weight = 0
for item in s:

value += item.value
weight += item.weight

if weight <= maxweight:
if value > bestvalue:

best = s
bestvalue = value

return best

2n subsets

Θ(n) for

each one

Running time ∈ Θ(n2n) Does this prove it is not in P?

33Lecture 24: P=NP?

No!

To prove it is not in P, we would

need to show the best possible

algorithm that solves it is not

polynomial time.

34Lecture 24: P=NP?

Is KNAPSACK NP-Complete?

35Lecture 24: P=NP?

NP-Complete

A language B is in NP-complete if:

2. There is a polynomial-

time reduction from every

problem A ∈ NP to B.
1. B ∈ NP

B

NP

B

NP

36Lecture 24: P=NP?

KNAPSACK in NP

• Certificate: subset of items

• Test in P: add up the weights of those items,

check it is less than maxweight

For the non-decision problem: ask for certificates for all

values 1, 2, …, maxweight.

7

37Lecture 24: P=NP?

KNAPSACK in NP-Complete

• Reduction from SUBSET-SUM to

KNAPSACK:

SUBSET-SUM = { <S, t> | S = {x1, …, xk} and for

some {y1, …, yl } ⊆ S, Σyi = t }

Transform input to match KNAPSACK:

Input: a set of n items

{<name0, value0, weight0>, …,

<namen-1, valuen-1, weightn-1>}

and maxweight

38Lecture 24: P=NP?

Input Transformation

SUBSET-SUM (<S, t>): S = {x1, …, xk}

do something using

KNAPSACK (<{<“x1”, x1, x1>, …,

<“xk”, xk, xk>}, t>)

KNAPSACK Input: a set of n items

<{<name0, value0, weight0>, …,

<namen-1, valuen-1, weightn-1>},

maxweight>

39Lecture 24: P=NP?

Output Transformation

SUBSET-SUM (<S, t>): S = {x1, …, xk}

accept iff

t = Σ (KNAPSACK (<{<“x1”, x1, x1>, …,

<“xk”, xk, xk>}, t>)))

KNAPSACK Output: a subset of the input
items such that the sum of the weights of
all items in the output set is ≤ maxweight
and there is no subset with weight sum ≤
maxweight with a greater value sum

40Lecture 24: P=NP?

“Solving” NP-Hard Problems

• What do we do when solving an important

problem requires solving an NP-Complete

problem?

a. Give up.

b. Hope P = NP.

c. Solve a different problem.

d. Settle for an “incorrect” answer.

41Lecture 24: P=NP?

Approximation Algorithms

Sometimes it is better to produce

an incorrect answer quickly, than

wait (longer than the lifetime of

the universe) for a correct answer.

A good approximation algorithm:

1. Runs in Polynomial Time

2. Produces answer within some known bound of best answer

42Lecture 24: P=NP?

Greedy Algorithms

• Make locally optimal decisions

• For NP-Hard problems: cannot guarantee you

find the best answer this way

8

43Lecture 24: P=NP?

Greedy Knapsack Algorithm
def knapsack_greedy (items, maxweight):

result = []

weight = 0
while True:

try to add the best item
weightleft = maxweight - weight

bestitem = None

for item in items:
if item.weight <= weightleft \

and (bestitem == None \

or item.value > bestitem.value):
bestitem = item

if bestitem == None: break
else:

result.append (bestitem)

weight += bestitem.weight
return result

Running Time
∈Θ(n2)

44Lecture 24: P=NP?

Is Greedy Algorithm Correct?

No.

Proof by counterexample:

Consider input

items = {<“gold”, 100, 1 >,

<“platinum”, 110, 3>

<“silver”, 80, 2 >}

maxweight = 3

Greedy algorithm picks {<“platinum”>}

value = 110, but {<“gold”>, “silver”>}

has weight <= 3 and value = 180

45Lecture 24: P=NP?

The Moral

Life is (NP-) Hard,

but probably not

(NP-)Complete…

Thursday: Karsten Nohl will talk

about interesting theory problems

in breaking cryptosystems

