
UVa - cs302: Theory of Computation Spring 2008

Problem Set 3
Corrected version, 16 February 2007. Due: Tuesday, 19 February (2:02pm)

This problem set covers material from Classes 1-9 (through February 14) and Sipser’s book
through the end of Chapter 2, focusing on context-free languages and the two ways we
have seen to recognize them: context-free grammars and pushdown automata. For full
credit, answers must be concise, clear, and convincing, not just correct. Please staple your
answer sheets before class.

Honor Policy. For this assignment, we will use the “Tila Tequila” collaboration policy as
described on Problem Set 2.

Problem 1: Nondeterminstic Pushdown Automata. Draw a nondeterministic pushdown
automaton that recognizes the language

{
w0wR|w ∈ {0, 1}∗

}
. The fewer states you use,

the better.

Problem 2: Defining Regular Expressions. Definition 1.52 provides a formal definition of
a regular expression. Rewrite that definition as a context-free grammar. The set of terminals
is implied by the definition: Σ = {a, ε, ∅,∪, ◦,∗ , (,)} (where a represents any symbol in the
alphabet, and ε means the epsilon symbol, not the empty string; if you need to represent
the empty string in your grammar use λ to avoid confusion with the ε symbol that can ap-
pear in a regular expression). You may use as many variables are you need to be clear, but
should give them sensible names. Your grammar should be able to generate all possible
regular expressions, but no strings that are not regular expressions.

Problem 3: Context-Free Grammars. Consider the grammar G below, which describes the
same language as Problem 1d from PS1: (S is the start symbol, and 0 and 1 are terminals)

S → ε
S → S00
S → 11S
S → 0S1
S → 10S

a. Show that the string 111000 can be produced by G by showing a derivation that
produces it.

b. How many different derivations are there in G to produce 111000? (Support your
answer with a clear argument.)

c. What is the fewest number of rules that can be added to G to produce a grammar
that describes the language of all even-length strings in {0, 1}∗? (Your answer should
include the rules to add.)

PS3-1

Problem 4: Regular Grammars. As discussed in Lecture 8, a regular grammar is a replace-
ment grammar in which all rules have the form A → aB or A → a where A and B rep-
resent any variable and a represents a terminal. Prove that all regular languages can be
recognized by a regular grammar.

Problem 5: Pumping Lemma for Context-Free Languages. For each part, either argue that
the language is context-free (ideally, by showing how a PDA could recognize it or a CFG
could generate it) or use the pumping lemma to show it is not context free.

a.
{

0i1i0i
}

b.
{

1a + 1b = 1c|a ≥ 0, b ≥ 0, c ≥ 0, a+ b = c
}

c.
{

0i1j2k|i < j < k
}

(hint: compare to Example 2.37)

Problem 6: Parsing. Below is a slightly simplified excerpt from the actual Java gram-
mar specification (from http://java.sun.com/docs/books/jls/second edition/html/syntax.doc.html,
Chapter 18). I have changed the syntax to match the context-free grammar notation used
in Sipser and the class.

Expression → Expression1 OptAssignmentOperator
OptAssignmentOperator → ε | AssignmentOperator Expression1
Expression1 → Expression2 OptExpression1Rest
OptExpression1Rest → ε | Expression1Rest
Expression1Rest → ? Expression : Expression1
AssignmentOperator → =
Expression2 → Expression3 OptExpression2Rest
OptExpression2Rest → ε | Expression2Rest
Expression2Rest → InfixExpressionList
InfixExpressionList → ε | InfixExpression InfixExpressionList
InfixExpression → InfixOp Expression3
InfixOp → || | && | == | +
Expression3 → Primary SelectorList
Primary → (Expression) | Identifier | Literal
SelectorList → ε | Selector SelectorList
Selector → [Expression] | . Identifier

We use Identifier to mean any valid Java identifier (see Section 3.8 of the Java Language
Specification for the grammar for Identifiers) and Literal to mean any numeric literal.
For the examples, assume any single alphabet letter is an Identifier and that all vari-
ables are declared with type boolean, and any number, true, and false are Literals.
(The conditional expression, Expressionpred ? Expressionconsequent : Expressionalternate,
is evaluated by first evaluating Expressionpred, which must evaluate to a boolean. If it
evaluates to true, then the value of the conditional expression is the value obtained by

PS3-2

evaluating Expressionconsequent (and Expressionalternate is not evaluated). If it evaluates
to false, then the value of the conditional expression is the value obtained by evaluating
Expressionalternate (and Expressionconsequent is not evaluated).)

a. Show a derivation for the expression: a . f

b. Consider the following Java expression:

true ? false ? true == true : false : false == false

which evaluates to false. By adding only parentheses, transform it into a grammat-
ical Java expression that evaluates to true.

c. Explain how you would change the grammar rules so all Expressions that can be
produced by the above grammar are still valid expressions, but the original expres-
sion in the previous part evaluates to true in the modified grammar. It is acceptable
if your answer leads to an ambiguous grammar, as long as one possible parse of
the expression in your grammar evaluates to true. (It is better, of course, if your
grammar is unambiguous and the only possible parse of the expression evaluates to
true.)

Problem 7: Deterministic Pushdown Automata. Precisely describe the language recog-
nized by the deterministic pushdown automata shown below. (The state names are in-
tended to be somewhat helpful, but not completely revealing. If your answer is correct,
you should be able to find a simple way to describe the language.) (Hint: try comparing
this machine to the machine from Class 6 from class and Example 3 of the notes.)

Challenge Bonus. (up to 20 points) Draw a deterministic pushdown automaton that rec-
ognizes the same language, but uses fewer states. (Make sure that your PDA is still deter-
ministic.) A good answer must include a clear explanation of how your DPDA works.

PS3-3

