
UVa - cs302: Theory of Computation Spring 2008

Problem Set 5 - Undecidability
Due: Tuesday, 1 April (2:02pm)

This problem set focuses on material from Classes 14-18 (through 28 March) and
Sipser’s book Chapter 4 and Chapter 5 (through Section 5.1). Answer all 6 ques-
tions. For full credit, answers must be concise, clear, and convincing, not just cor-
rect. Please staple your answer sheets before class.

Honor Policy (changed from PS4). As with previous problem sets, you may dis-
cuss and work on the problems with anyone you want. After your discussions,
you must destroy any notes from the meetings and write up your own solutions
based on your own understanding. Unlike in previous problem sets, this policy
also applies to notes from problem-solving sessions that pertain to questions on
the problem sets. You may preserve notes from these meetings that pertain to other
problems or general questions, but should not use notes from these meetings that
include answers to specific questions from the problem set.

Problem 1: Random Access Memory. Random access memory (misnamed, since
it is not at all random) allows a program to directly reference specified memory
locations. Assume each memory location can store a single byte (8 bits) value.
Show that a Turing Machine can simulate random access memory. Your machine
should be able to simulate these two instructions:

1. store < location > — write the value represented by the current
square on the tape into location < location >. The < location > is
any 32-bit integer, and < value > is any 8-bit value (represented by
a single square on the tape).

2. load < location > — read the value in the location < location > and
write it onto the current square on the tape. At the end of a load
instruction, the square under the tape head should contain the read
value. The read value should be the last value that was stored in
< location > (using a store instruction), or 0 if no value has been
stored in < location >.

a. Provide an implementation-level description of a Turing Machine that can
simulate the load and store instructions. Your description should explain
how you represent memory on the tape and provide implementation-level
descriptions of how you simulate the two instructions.

PS5-1

b. Is the programming language consisting of just the load and store instruc-
tions above a universal programming language? (That is, is it possible to express
all possible algorithms using this language.) If it is, prove it (by explaining
how you could implement a universal Turing Machine using the load/store
language. If it is not, explain convincingly why not, and describe the sim-
plest modifications needed to make the language a universal programming
language.

Problem 2: Language Sizes. Consider the language,

BIGGERDFA = {〈A, B〉 | A and B are DFAs and |L(A)| > |L(B)|}

The notation |L(M)| means the size of the language described by the machine M .
The size of a language is the number of strings in the language. For purposes of
this question, you should assume the definitions about set sizes from Definition
4.12.

Is BIGGERDFA decidable? Either prove that it is decidable (for example, by pro-
viding a high-level description of a Turing Machine that can decide it), or prove
that it is undecidable (for example, but showing that a known undecidable prob-
lem can be reduced to it).

Problem 3: Closure Properties. For each part, provide a clear yes or no answer,
and support your answer with a brief and convincing proof.

a. If A is a Turing-recognizable language, is the complement of A a Turing-
recognizable language?

b. If A is a Turing-decidable language, is the complement of A a Turing-decidable
language?

c. If A and B are Turing-recognizable languages, is A∩B a Turing-recognizable
language?

d. If A and B are Turing-decidable language, is A ∩ B a Turing-decidable lan-
guage?

Problem 4: Undecidability. Prove that each of the following languages is unde-
cidable. (Hint: show that you can reduce a known undecidable problem to the
problem of deciding the given language.)

a. LINF = {< M > |M describes a TM that accepts infinitely many strings}

b. LHelloWorld = {J |J is a Java program that prints out “Hello World”}

PS5-2

Problem 5: Unmodifiable-Input Turing Machine. (Based on a question by Ron
Rivest.) Consider a one-tape Turing Machine that is identical to a regular Tur-
ing machine except the input may not be overwritten. That is, the symbol in any
square that is non-blank in the initial configuration must never change. Otherwise,
the machine may read and write to the rest of the tape with no constraints (beyond
those that apply to a regular Turing Machine).

HALTUTM = {< M,w > |M is an unmodifiable-input TM and M halts on input w}

a. What is the set of languages that can be recognized by an unmodifiable-input
TM? (Support your answer with a convincing argument.)

b. Is HALTUTM decidable (by a regular TM)? (Support your answer with a con-
vincing proof.)

Problem 6: Minds and Machines. Many people find the suggestion that a human
mind is no more powerful than a Turing Machine to be disturbing, but there ap-
pear to be strong arguments supporting this position. For example, consider this
argument:

The brain is a collection of 100 billion neurons. Each neuron is a cell that
has inputs (known as dendrites) and outputs (synapses that emit neuro-
trasmitter chemicals). The output depends on the inputs in a determin-
istic way that could be simulated by a Turing Machine. The connections
between neurons could also be simulated by a Turing Machine. Since
all components of the brain could be simulated by a Turing Machine,
the brain itself could be simulated by a Turing Machine. Hence, a hu-
man mind is no more powerful than a Turing Machine.

Write a short essay that counters this argument (although many books have been
written on this question, you should limit your response to no more than one
page). If you reject the premise of this question either because you do not find
it disturbing to think of your mind as a Turing Machine, or you feel that the only
way to counter this argument is to resort to supernatural (e.g., religious) notions,
you may replace this question with Sipser’s Problem 5.13.

PS5-3

