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CS588: Cryptology
University of Virginia
Computer Science

Lecture 2: 
Perfect Ciphers
(in Theory, not Practice)

Claude Shannon, 
1916-2001

Shannon was the person who saw that 
the binary digit was the fundamental 
element in all of communication. That was 
really his discovery, and from it the whole 
communications revolution has sprung.
R G Gallager

I just wondered how things were put 
together.
Claude Shannon
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Survey Results
• Forged email: 7 out of 34
• Broken into systems: 5 out of 34

– All socially responsible, of course

• Victim: 10 out of 34
“hopefully not, but if they did a good job I probably 
would never have noticed it.”

• Movies/Books: Sneakers (10 – “should be 
required for the course”), Cryptonomicon (5), 
Hackers (3), Matrix (2), Mercury Rising (2), Crypto 
(2), Takedown, Enemy of the State, Cuckoo’s 
Egg, Maximum Security, The Net, Dr. 
Strangelove, Office Space, “Swordfish was really 
really bad”
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Survey: Requested Topics

• SSL, PGP, RSA
• Network and web security, e-commerce
• Quantum Computing
• Banks, ATMs
• “All the NSA secrets”
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Last Time

• Big keyspace is not necessarily a strong 
cipher

• Claim: One-Time Pad is perfect cipher 
– In theory: depends on perfectly random key, 

secure key distribution, no reuse
– In practice: usually ineffective (VENONA, 

Lorenz Machine)
• Today: what does is mean to be a perfect 

cipher?
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Ways to Convince
• “I tried really hard to break my cipher, but couldn’t.  I’m a 

genius, so I’m sure no one else can break it either.”
• “Lots of really smart people tried to break it, and couldn’t.”
• Mathematical arguments – key size (dangerous!), 

statistical properties of ciphertext, depends on some 
provably (or believed) hard problem

• Invulnerability to known cryptanalysis techniques (but what 
about undiscovered techniques?)

• Show that ciphertext could match multiple reasonable 
plaintexts without knowing key
• Simple monoalphabetic secure for about 10 letters of 

English: XBCF CF FWPHGW
This is secure
Spat at troner
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Claude Shannon

• Master’s Thesis [1938] –
boolean algebra in electronic circuits

• “Mathematical Theory of Communication” 
[1948] – established information theory

• “Communication Theory of Secrecy Systems” 
[1945/1949] (linked from manifest)

• Invented rocket-powered Frisbee, could juggle 
four balls while riding unicycle
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Entropy
Amount of information in a message

H(M) = - Σ P(Mi) log P(Mi)
over all possible messages Mi

If there are n equally probable messages,

H(M) = - Σ 1/n log 1/n 
= - (n * (1/n log 1/n))
= - (1 log 1/n) = log n

Base of log is alphabet size, so for binary:
H(M) = log2 n

where n is the number of possible meanings
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Entropy Example

M = months of the year

H(M) = 

= log2 12 ≈ 3.6 (need 4 bits to encode a year)
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Rate
• Absolute rate: how much information 

can be encoded
R = log2 Z (Z=size of alphabet)
REnglish =

• Actual rate of a language:
r = H(M) / N

M is an N-letter message.
r of months spelled out using ASCII:

log2 26 ≈ 4.7 bits / letter

= log2 12 / (8 letters * 8 bits/letter) ≈ 0.06
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Rate of English
• r(English) is about .28 letters/letter (1.3 

bits/letter)
– How do we get this?

• How many meaningful 20-letter messages in 
English?
r = H(M) / N
.28 = H(M)/20
H(M) = 5.6 = log26 n
n = 265.6 ~ 83 million (of 2*1028 possible)
Probability that 20-letters are sensible English is

About 1 in 2 * 1020
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Redundancy
• Redundancy (D) is defined:

D = R – r
• Redundancy in English:

D = 1 - .28 = .72 letters/letter
D = 4.7 – 1.3 = 3.4 bits/letter
Each letter is 1.3 bits of content, and 
3.4 bits of redundancy.  (~72%)

• 7-bit ASCII
D = 7 – 1.3  = 5.7
81% redundancy, 19% information
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Unicity Distance

• Entropy of cryptosystem: (K = number of 
possible keys)

H(K) = logAlphabet Size K
if all keys equally likely

H(64-bit key) = log2 264 = 64
• Unicity distance is defined as:

U = H(K)/D
Expected minimum amount of ciphertext 
needed for brute-force attack to succeed.
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Unicity Examples
• One-Time Pad

H(K) = infinite
U = H(K)/D = infinite

• Monoalphabetic Substitution
H(K) = log2 26! ≈ 87
D = 3.4 (redundancy in English)
U = H(K)/D ≈ 25.5

Intuition: if you have 25 letters, probably only 
matches one possible plaintext.

D = 0 (random bit stream)
U = H(K)/D = infinite
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Unicity Distance
• Probabilistic measure of how much 

ciphertext is needed to determine a 
unique plaintext

• Does not indicate how much ciphertext 
is needed for cryptanalysis

• If you have less than unicity distance 
ciphertext, can’t tell if guess is right.

• As redundancy approaches 0, hard to 
cryptanalyze even simple cipher.
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Shannon’s Theory [1945]

Message space: { M1, M2,..., Mn }
Assume finite number of messages
Each message has probability 
p(M1) + p(M2) + ... + p(Mn) = 1

Key space: { K1, K2,..., Kl }

(Based on Eli Biham’s notes)
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Perfect Cipher: Definition

M1

M2

Mn

C1

C2

Cn

Ka

......

Kb

A perfect cipher: 
there is some key 
that maps any 
message to any 
ciphertext with equal 
probability.

For any i, j:
p (Mi|Cj) = p (Mi)
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Conditional Probability
P (B | A) = The probability of B, given that A occurs

P (coin flip is tails) = ½ 
P (coin flip is tails | last coin flip was heads) =

½
P (today is Monday | yesterday was Sunday) =

1
P (today is a weekend day | yesterday was a workday) = 

1/5
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Calculating Conditional 
Probability

P (B | A) = P (A ∩ B) 
P (A)

P (coin flip is tails | last coin flip was heads) =
P (coin flip is tails and last coin flip was heads)

P(last coin flip was heads)

= (½ * ½) / ½ = ½ 
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P (today is a weekend day | yesterday was a   
workday) 

= P (today is a weekend day and yesterday was a   
workday) / P (yesterday was a workday)

=  P (today is a weekend day) * P(yesterday was 
a workday) / P (yesterday was a workday)

= 2/7 * 5/7 / 5/7 = 2/7

Wrong! 

P(A ∩ B) = P(A) * P(B)
only if A and B are independent events
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Perfect Cipher

Definition: ∀ i, j: P (Mi|Cj) = P (Mi)

A cipher is perfect iff: 
∀ M, C P (C | M) = P (C)

Or, equivalently: 
∀ M, C P (M | C) = P (M)
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Perfect Cipher

∀ M, C P (C | M) = P (C)
∀ M, C P (C) = Σ P(K)

EK(M) = C

Or:
∀ C Σ P(K) is independent of M

EK(M) = C

Without knowing anything about the key, any 
ciphertext is equally likely to match and 
plaintext.

K

K
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Example: Monoalphabetic

• Random monoalphabetic substitution 
for one letter message:

∀ C,M: p(C) = p(C | M) = 1/26.
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Example: One-Time Pad
For each bit: 
p(Ci = 0) = p(Ci = 0 | M i = 0) = p(Ci = 0 | M i = 1) = ½
since Ci = Ki ⊕ Mi

p (Ki ⊕ Mi = 0) = p (Ki = 1) * p (Mi = 1)
+ p (Ki = 0) * p (Mi = 0)

Truly random K means p (Ki = 1) = p (Ki = 0) = ½
= ½ * p (Mi = 1) + ½ * p (Mi = 0)
= ½ * (p (Mi = 1) + p (Mi = 0)) = ½

All key bits are independent, so:
p(C) = p(C | M) QED.
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Perfect Cipher Keyspace Theorem

Theorem: If a cipher is perfect, there 
must be at least as many keys (l) are 
there are possible messages (n).
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Proof by Contradiction

Suppose there is a perfect cipher with 
l < n. (More messages than keys.)

Let C0 be some ciphertext with p(C0) > 0.
There exist 

mmessages M such that M = DK(C0 ) 
n - mmessages M0 such that M0 ≠ DK(C0 ) 

We know 1 ≤ m ≤ l < n so n - m > 0 and 
there is at least one message M0.
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Proof, cont.

Consider the message M0 where
M0 ≠ DK(C0 ) for any K.

So,
p (C0 |M0) = 0.

In a perfect cipher, 
p (C0 |M0) = p (C0) > 0.

Contradiction!  It isn’t a perfect cipher.
Hence, all perfect ciphers must have l ≥ n.
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Example: Monoalphabetic

Random monoalphabetic substitution is 
not a perfect cipher for messages of up to 
20 letters:

l = 26! n = 2620

l < n its not a perfect cipher.

In previous proof, could choose C0 = “AB” and 
M0 = “ee” and p (C0 | M0) = 0.
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Example: Monoalphabetic

Is random monoalphabetic substitution a 
perfect cipher for messages of up to 2 
letters?

l = 26! n = 262

l ≥ n.

No!  Showing l ≥ n does not prove its perfect.
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Summary

• Cipher is perfect: ∀ i, j: p (Mi|Cj) = p (Mi)
Given any ciphertext, the probability that it 
matches any particular message is the 
same.

• Equivalently, ∀ i, j: p (Ci|Mj) = p (Ci)
Given any plaintext, the probability that it 
matches any particular ciphertext is the 
same.
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Imperfect Cipher

• To prove a cipher is imperfect:
– Find a ciphertext that is more likely to be 

one message than another
– Show that there are more messages than 

keys
• Implies there is some ciphertext more likely to 

be one message than another even if you can’t 
find it.

3 Sep 2001 University of Virginia CS 588 32

Charge

• Problem Set 1: due next Monday
– Next lecture will help with Question 5a,b
– All other questions covered (as much as 

we will cover them in class) already
• Next time: 

– Project Kickoff
– Enigma


